Bellman-Ford 算法及其优化

转自:http://hi.baidu.com/jzlikewei/blog/item/94db7950f96f995a1038c2cd.html

Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题。Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好好思考),而Dijkstra算法只能处理边权非负的问题,因此 Bellman-Ford算法的适用面要广泛一些。但是,原始的Bellman-Ford算法时间复杂度为 O(VE),比Dijkstra算法的时间复杂度高,所以常常被众多的大学算法教科书所忽略,就连经典的《算法导论》也只介绍了基本的Bellman-Ford算法,在国内常见的基本信息学奥赛教材中也均未提及,因此该算法的知名度与被掌握度都不如Dijkstra算法。事实上,有多种形式的Bellman-Ford算法的优化实现。这些优化实现在时间效率上得到相当提升,例如近一两年被热捧的SPFA(Shortest-Path Faster Algoithm 更快的最短路径算法)算法的时间效率甚至由于Dijkstra算法,因此成为信息学奥赛选手经常讨论的话题。然而,限于资料匮乏,有关Bellman-Ford算法的诸多问题常常困扰奥赛选手。如:该算法值得掌握么?怎样用编程语言具体实现?有哪些优化?与SPFA算法有关系么?本文试图对Bellman-Ford算法做一个比较全面的介绍。给出几种实现程序,从理论和实测两方面分析他们的时间复杂度,供大家在备战省选和后续的noi时参考。

Bellman-Ford算法思想

Bellman-Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题。对于给定的带权(有向或无向)图 G=(V,E),其源点为s,加权函数 w是 边集 E 的映射。对图G运行Bellman-Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路。若不存在这样的回路,算法将给出从源点s到 图G的任意顶点v的最短路径d[v]。

Bellman-Ford算法流程分为三个阶段:

(1)    初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0;

(2)    迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)

(3)    检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。

算法描述如下:

Bellman-Ford(G,w,s) :boolean   //图G ,边集 函数 w ,s为源点

1        for each vertex v ∈ V(G) do        //初始化 1阶段

2            d[v] ←+∞

3        d[s] ←0;                             //1阶段结束

4        for i=1 to |v|-1 do               //2阶段开始,双重循环。

5           for each edge(u,v) ∈E(G) do //边集数组要用到,穷举每条边。

6              If d[v]> d[u]+ w(u,v) then      //松弛判断

7                 d[v]=d[u]+w(u,v)               //松弛操作   2阶段结束

8        for each edge(u,v) ∈E(G) do

9            If d[v]> d[u]+ w(u,v) then

10            Exit false

11    Exit true

下面给出描述性证明:

首先指出,图的任意一条最短路径既不能包含负权回路,也不会包含正权回路,因此它最多包含|v|-1条边。

其次,从源点s可达的所有顶点如果 存在最短路径,则这些最短路径构成一个以s为根的最短路径树。Bellman-Ford算法的迭代松弛操作,实际上就是按顶点距离s的层次,逐层生成这棵最短路径树的过程。

在对每条边进行1遍松弛的时候,生成了从s出发,层次至多为1的那些树枝。也就是说,找到了与s至多有1条边相联的那些顶点的最短路径;对每条边进行第2遍松弛的时候,生成了第2层次的树枝,就是说找到了经过2条边相连的那些顶点的最短路径……。因为最短路径最多只包含|v|-1 条边,所以,只需要循环|v|-1 次。

每实施一次松弛操作,最短路径树上就会有一层顶点达到其最短距离,此后这层顶点的最短距离值就会一直保持不变,不再受后续松弛操作的影响。(但是,每次还要判断松弛,这里浪费了大量的时间,怎么优化?单纯的优化是否可行?)

如果没有负权回路,由于最短路径树的高度最多只能是|v|-1,所以最多经过|v|-1遍松弛操作后,所有从s可达的顶点必将求出最短距离。如果 d[v]仍保持 +∞,则表明从s到v不可达。

如果有负权回路,那么第 |v|-1 遍松弛操作仍然会成功,这时,负权回路上的顶点不会收敛。

最新文章

  1. x01.os.19: linux 0.0
  2. Asp.Net 4.0 FormAuthentication 原理
  3. EF Power Tools的Reverse Engineer Code First逆向生成Model时处理计算字段
  4. Sql Server 查询第30条数据到第40条记录数
  5. C++ 多态的实现原理与内存模型
  6. 什么是RAW数据?
  7. 转:Vmware Exsi使用简要说明
  8. maven skip tests
  9. 遍历并remove HashMap中的元素时,遇到ConcurrentModificationException
  10. jQuery.Autocomplete实现自动完成功能
  11. RxJava RxAndroid【简介】
  12. [工具] XMind
  13. JS入门(四)
  14. 团队作业8——Beta 阶段冲刺4th day
  15. Luogu 2296 寻找道路
  16. win7 64位wamp2.5无法启动MSVCR110.DLL丢失听语音
  17. python的Virtualenv
  18. 【算法】深度优先 马走日 Hamilton routes
  19. 腾讯首批 5000 人群,现在加入【FineUI总群】,极速体验!
  20. python之字符编码

热门文章

  1. PostgreSQL 一主两备节点(两备节点为同步节点)故障恢复
  2. PostgreSQL单机、同步复制、异步复制性能测试对比
  3. 事件监听addEventListener()和removeEventListener() ---------1
  4. 创建Java类并实例化深入理解
  5. 转:python webdriver API 之cookie 处理
  6. uva 11520 - Fill the Square
  7. CCF真题之最大矩形
  8. test generation和MBIST
  9. 为centos添加额外的源
  10. 【crunch bang】增加壁纸图片文件