一、概述

本篇我们首先通过回归算法实现一个葡萄酒品质预测的程序,然后通过AutoML的方法再重新实现,通过对比两种实现方式来学习AutoML的应用。

首先数据集来自于竞赛网站kaggle.com的UCI Wine Quality Dataset数据集,访问地址:https://www.kaggle.com/c/uci-wine-quality-dataset/data

该数据集,输入为一些葡萄酒的化学检测数据,比如酒精度等,输出为品酒师的打分,具体字段描述如下:

Data fields
Input variables (based on physicochemical tests):
1 - fixed acidity
2 - volatile acidity
3 - citric acid
4 - residual sugar
5 - chlorides
6 - free sulfur dioxide
7 - total sulfur dioxide
8 - density
9 - pH
10 - sulphates
11 - alcohol Output variable (based on sensory data):
12 - quality (score between 0 and 10) Other:
13 - id (unique ID for each sample, needed for submission)

  

二、代码

namespace Regression_WineQuality
{
public class WineData
{
[LoadColumn()]
public float FixedAcidity; [LoadColumn()]
public float VolatileAcidity; [LoadColumn()]
public float CitricACID; [LoadColumn()]
public float ResidualSugar; [LoadColumn()]
public float Chlorides; [LoadColumn()]
public float FreeSulfurDioxide; [LoadColumn()]
public float TotalSulfurDioxide; [LoadColumn()]
public float Density; [LoadColumn()]
public float PH; [LoadColumn()]
public float Sulphates; [LoadColumn()]
public float Alcohol; [LoadColumn()]
[ColumnName("Label")]
public float Quality; [LoadColumn()]
public float Id;
} public class WinePrediction
{
[ColumnName("Score")]
public float PredictionQuality;
} class Program
{
static readonly string ModelFilePath = Path.Combine(Environment.CurrentDirectory, "MLModel", "model.zip"); static void Main(string[] args)
{
Train();
Prediction(); Console.WriteLine("Hit any key to finish the app");
Console.ReadKey();
} public static void Train()
{
MLContext mlContext = new MLContext(seed: ); // 准备数据
string TrainDataPath = Path.Combine(Environment.CurrentDirectory, "Data", "winequality-data-full.csv");
var fulldata = mlContext.Data.LoadFromTextFile<WineData>(path: TrainDataPath, separatorChar: ',', hasHeader: true); var trainTestData = mlContext.Data.TrainTestSplit(fulldata, testFraction: 0.2);
var trainData = trainTestData.TrainSet;
var testData = trainTestData.TestSet; // 创建学习管道并通过训练数据调整模型
var dataProcessPipeline = mlContext.Transforms.DropColumns("Id")
.Append(mlContext.Transforms.NormalizeMeanVariance(nameof(WineData.FreeSulfurDioxide)))
.Append(mlContext.Transforms.NormalizeMeanVariance(nameof(WineData.TotalSulfurDioxide)))
.Append(mlContext.Transforms.Concatenate("Features", new string[] { nameof(WineData.FixedAcidity),
nameof(WineData.VolatileAcidity),
nameof(WineData.CitricACID),
nameof(WineData.ResidualSugar),
nameof(WineData.Chlorides),
nameof(WineData.FreeSulfurDioxide),
nameof(WineData.TotalSulfurDioxide),
nameof(WineData.Density),
nameof(WineData.PH),
nameof(WineData.Sulphates),
nameof(WineData.Alcohol)})); var trainer = mlContext.Regression.Trainers.LbfgsPoissonRegression(labelColumnName: "Label", featureColumnName: "Features");
var trainingPipeline = dataProcessPipeline.Append(trainer);
var trainedModel = trainingPipeline.Fit(trainData); // 评估
var predictions = trainedModel.Transform(testData);
var metrics = mlContext.Regression.Evaluate(predictions, labelColumnName: "Label", scoreColumnName: "Score");
PrintRegressionMetrics(trainer.ToString(), metrics); // 保存模型
Console.WriteLine("====== Save model to local file =========");
mlContext.Model.Save(trainedModel, trainData.Schema, ModelFilePath);
} static void Prediction()
{
MLContext mlContext = new MLContext(seed: ); ITransformer loadedModel = mlContext.Model.Load(ModelFilePath, out var modelInputSchema);
var predictor = mlContext.Model.CreatePredictionEngine<WineData, WinePrediction>(loadedModel); WineData wineData = new WineData
{
FixedAcidity = 7.6f,
VolatileAcidity = 0.33f,
CitricACID = 0.36f,
ResidualSugar = 2.1f,
Chlorides = 0.034f,
FreeSulfurDioxide = 26f,
TotalSulfurDioxide = 172f,
Density = 0.9944f,
PH = 3.42f,
Sulphates = 0.48f,
Alcohol = 10.5f
}; var wineQuality = predictor.Predict(wineData);
Console.WriteLine($"Wine Data Quality is:{wineQuality.PredictionQuality} ");
}
}
}

关于泊松回归的算法,我们在进行人脸颜值判断的那篇文章已经介绍过了,这个程序没有涉及任何新的知识点,就不重复解释了,主要目的是和下面的AutoML代码对比用的。

三、自动学习

我们发现机器学习的大致流程基本都差不多,如:准备数据-明确特征-选择算法-训练等,有时我们存在这样一个问题:该选择什么算法?算法的参数该如何配置?等等。而自动学习就解决了这个问题,框架会多次重复数据选择、算法选择、参数调优、评估结果这一过程,通过这个过程找出评估效果最好的模型。

全部代码如下:

namespace Regression_WineQuality
{
public class WineData
{
[LoadColumn()]
public float FixedAcidity; [LoadColumn()]
public float VolatileAcidity; [LoadColumn()]
public float CitricACID; [LoadColumn()]
public float ResidualSugar; [LoadColumn()]
public float Chlorides; [LoadColumn()]
public float FreeSulfurDioxide; [LoadColumn()]
public float TotalSulfurDioxide; [LoadColumn()]
public float Density; [LoadColumn()]
public float PH; [LoadColumn()]
public float Sulphates; [LoadColumn()]
public float Alcohol; [LoadColumn()]
[ColumnName("Label")]
public float Quality; [LoadColumn()]
public float ID;
} public class WinePrediction
{
[ColumnName("Score")]
public float PredictionQuality;
} class Program
{
static readonly string ModelFilePath = Path.Combine(Environment.CurrentDirectory, "MLModel", "model.zip");
static readonly string TrainDataPath = Path.Combine(Environment.CurrentDirectory, "Data", "winequality-data-train.csv");
static readonly string TestDataPath = Path.Combine(Environment.CurrentDirectory, "Data", "winequality-data-test.csv"); static void Main(string[] args)
{
TrainAndSave();
LoadAndPrediction(); Console.WriteLine("Hit any key to finish the app");
Console.ReadKey();
} public static void TrainAndSave()
{
MLContext mlContext = new MLContext(seed: ); // 准备数据
var trainData = mlContext.Data.LoadFromTextFile<WineData>(path: TrainDataPath, separatorChar: ',', hasHeader: true);
var testData = mlContext.Data.LoadFromTextFile<WineData>(path: TestDataPath, separatorChar: ',', hasHeader: true); var progressHandler = new RegressionExperimentProgressHandler();
uint ExperimentTime = ; ExperimentResult<RegressionMetrics> experimentResult = mlContext.Auto()
.CreateRegressionExperiment(ExperimentTime)
.Execute(trainData, "Label", progressHandler: progressHandler); Debugger.PrintTopModels(experimentResult); RunDetail<RegressionMetrics> best = experimentResult.BestRun;
ITransformer trainedModel = best.Model; // 评估 BestRun
var predictions = trainedModel.Transform(testData);
var metrics = mlContext.Regression.Evaluate(predictions, labelColumnName: "Label", scoreColumnName: "Score");
Debugger.PrintRegressionMetrics(best.TrainerName, metrics); // 保存模型
Console.WriteLine("====== Save model to local file =========");
mlContext.Model.Save(trainedModel, trainData.Schema, ModelFilePath);
} static void LoadAndPrediction()
{
MLContext mlContext = new MLContext(seed: ); ITransformer loadedModel = mlContext.Model.Load(ModelFilePath, out var modelInputSchema);
var predictor = mlContext.Model.CreatePredictionEngine<WineData, WinePrediction>(loadedModel); WineData wineData = new WineData
{
FixedAcidity = 7.6f,
VolatileAcidity = 0.33f,
CitricACID = 0.36f,
ResidualSugar = 2.1f,
Chlorides = 0.034f,
FreeSulfurDioxide = 26f,
TotalSulfurDioxide = 172f,
Density = 0.9944f,
PH = 3.42f,
Sulphates = 0.48f,
Alcohol = 10.5f
}; var wineQuality = predictor.Predict(wineData);
Console.WriteLine($"Wine Data Quality is:{wineQuality.PredictionQuality} ");
}
}
}

四、代码分析

1、自动学习过程

            var progressHandler = new RegressionExperimentProgressHandler();
uint ExperimentTime = ; ExperimentResult<RegressionMetrics> experimentResult = mlContext.Auto()
.CreateRegressionExperiment(ExperimentTime)
.Execute(trainData, "Label", progressHandler: progressHandler); Debugger.PrintTopModels(experimentResult); //打印所有模型数据

ExperimentTime 是允许的试验时间,progressHandler是一个报告程序,当每完成一种学习,系统就会调用一次报告事件。

    public class RegressionExperimentProgressHandler : IProgress<RunDetail<RegressionMetrics>>
{
private int _iterationIndex; public void Report(RunDetail<RegressionMetrics> iterationResult)
{
_iterationIndex++;
Console.WriteLine($"Report index:{_iterationIndex},TrainerName:{iterationResult.TrainerName},RuntimeInSeconds:{iterationResult.RuntimeInSeconds}");
}
}

调试结果如下:

Report index:1,TrainerName:SdcaRegression,RuntimeInSeconds:12.5244426
Report index:2,TrainerName:LightGbmRegression,RuntimeInSeconds:11.2034988
Report index:3,TrainerName:FastTreeRegression,RuntimeInSeconds:14.810409
Report index:4,TrainerName:FastTreeTweedieRegression,RuntimeInSeconds:14.7338553
Report index:5,TrainerName:FastForestRegression,RuntimeInSeconds:15.6224459
Report index:6,TrainerName:LbfgsPoissonRegression,RuntimeInSeconds:11.1668197
Report index:7,TrainerName:OnlineGradientDescentRegression,RuntimeInSeconds:10.5353
Report index:8,TrainerName:OlsRegression,RuntimeInSeconds:10.8905459
Report index:9,TrainerName:LightGbmRegression,RuntimeInSeconds:10.5703296
Report index:10,TrainerName:FastTreeRegression,RuntimeInSeconds:19.4470509
Report index:11,TrainerName:FastTreeTweedieRegression,RuntimeInSeconds:63.638882
Report index:12,TrainerName:LightGbmRegression,RuntimeInSeconds:10.7710518

学习结束后我们通过Debugger.PrintTopModels打印出所有模型数据:

   public class Debugger
{
private const int Width = ;
public static void PrintTopModels(ExperimentResult<RegressionMetrics> experimentResult)
{
var topRuns = experimentResult.RunDetails
.Where(r => r.ValidationMetrics != null && !double.IsNaN(r.ValidationMetrics.RSquared))
.OrderByDescending(r => r.ValidationMetrics.RSquared); Console.WriteLine("Top models ranked by R-Squared --");
PrintRegressionMetricsHeader();
for (var i = ; i < topRuns.Count(); i++)
{
var run = topRuns.ElementAt(i);
PrintIterationMetrics(i + , run.TrainerName, run.ValidationMetrics, run.RuntimeInSeconds);
}
} public static void PrintRegressionMetricsHeader()
{
CreateRow($"{"",-4} {"Trainer",-35} {"RSquared",8} {"Absolute-loss",13} {"Squared-loss",12} {"RMS-loss",8} {"Duration",9}", Width);
} public static void PrintIterationMetrics(int iteration, string trainerName, RegressionMetrics metrics, double? runtimeInSeconds)
{
CreateRow($"{iteration,-4} {trainerName,-35} {metrics?.RSquared ?? double.NaN,8:F4} {metrics?.MeanAbsoluteError ?? double.NaN,13:F2} {metrics?.MeanSquaredError ?? double.NaN,12:F2} {metrics?.RootMeanSquaredError ?? double.NaN,8:F2} {runtimeInSeconds.Value,9:F1}", Width);
} public static void CreateRow(string message, int width)
{
Console.WriteLine("|" + message.PadRight(width - ) + "|");
}
}

其中CreateRow代码功能用于排版。调试结果如下:

Top models ranked by R-Squared --
| Trainer RSquared Absolute-loss Squared-loss RMS-loss Duration |
|1 FastTreeTweedieRegression 0.4731 0.46 0.41 0.64 63.6 |
|2 FastTreeTweedieRegression 0.4431 0.49 0.43 0.65 14.7 |
|3 FastTreeRegression 0.4386 0.54 0.49 0.70 19.4 |
|4 LightGbmRegression 0.4177 0.52 0.45 0.67 10.8 |
|5 FastTreeRegression 0.4102 0.51 0.45 0.67 14.8 |
|6 LightGbmRegression 0.3944 0.52 0.46 0.68 11.2 |
|7 LightGbmRegression 0.3501 0.60 0.57 0.75 10.6 |
|8 FastForestRegression 0.3381 0.60 0.58 0.76 15.6 |
|9 OlsRegression 0.2829 0.56 0.53 0.73 10.9 |
|10 LbfgsPoissonRegression 0.2760 0.62 0.63 0.80 11.2 |
|11 SdcaRegression 0.2746 0.58 0.56 0.75 12.5 |
|12 OnlineGradientDescentRegression 0.0593 0.69 0.81 0.90 10.5 |

根据结果可以看到,一些算法被重复试验,但在使用同一个算法时其配置参数并不一样,如阙值、深度等。

2、获取最优模型

            RunDetail<RegressionMetrics> best = experimentResult.BestRun;
ITransformer trainedModel = best.Model;

获取最佳模型后,其评估和保存的过程和之前代码一致。用测试数据评估结果:

*************************************************
* Metrics for FastTreeTweedieRegression regression model
*------------------------------------------------
* LossFn: 0.67
* R2 Score: 0.34
* Absolute loss: .63
* Squared loss: .67
* RMS loss: .82
*************************************************

看结果识别率约70%左右,这种结果是没有办法用于生产的,问题应该是我们没有找到决定葡萄酒品质的关键特征。

五、小结

到这篇文章为止,《ML.NET学习笔记系列》就结束了。学习过程中涉及的原始代码主要来源于:https://github.com/dotnet/machinelearning-samples 。

该工程中还有一些其他算法应用的例子,包括:聚类、矩阵分解、异常检测,其大体流程基本都差不多,有了我们这个系列的学习基础有兴趣的朋友可以自己研究一下。

六、资源获取 

源码下载地址:https://github.com/seabluescn/Study_ML.NET

回归工程名称:Regression_WineQuality

AutoML工程名称:Regression_WineQuality_AutoML

点击查看机器学习框架ML.NET学习笔记系列文章目录

最新文章

  1. java中的内部类总结
  2. Asp.Net Core 项目搭建 基础配置 和MySql 的使用
  3. C++11的一些新特性
  4. 图像金字塔及其在 OpenCV 中的应用范例(上)
  5. jquery仿天猫商城左侧导航菜单
  6. 【BZOJ】【3196】Tyvj 1730 二逼平衡树
  7. LFI漏洞利用总结(转载)
  8. Web页面向后台提交数据的方式和选择
  9. Map集合的四种遍历
  10. flash与字符串:字符串与属性
  11. PayPal为什么从Java迁移到Node.js
  12. 集成 ssh第一阶段
  13. 后PMP时代下的敏捷项目管理全国在线讲座
  14. 在阿里云 ECS 搭建 nginx https nodejs 环境(二、https)
  15. python 操作excel
  16. (PMP)解题技巧和典型题目分析(0903-2班)
  17. CF132E Bits of merry old England
  18. Java 类加载机制(阿里面试题)-何时初始化类
  19. C# ManualResetEventSlim 实现
  20. Linux下创建和删除软、硬链接 可临时处理空间不足

热门文章

  1. PHP中读写文件
  2. MySQL_各城市在线产品天订单数据20161130
  3. ACM学习历程—HDU 5326 Work(树形递推)
  4. Block Change Tracking (块改变跟踪)
  5. [转]BFC 神奇背后的原理
  6. poj2356Find a multiple——鸽巢定理运用
  7. MongoDB主从复制,主主复制
  8. XAML 编码规范 (思考)
  9. C# 序列化反序列化XML的帮助类
  10. 贪心+等价转化 HDU 1489