https://www.zybuluo.com/ysner/note/1317548---

题面

给出\(n\),用所有长为\(a\)、宽为\(b\)\((1\leq a,b\leq n)\)的长方形拼成正方形,最少需多少块?

多组数据。

  • \(30pts\) \(n\leq100,T\leq100\)
  • \(60pts\) \(n\leq3*10^4,T\leq300\)
  • \(100pts\) \(a,b\leq10^5,T\leq1000\)

解析

显然答案是$$\frac{lcm(a,b)}{a}*\frac{lcm(a,b)}{b}$$

暴力复杂度\(O(Tn^2logn)\),可以通过\(30pts\)。

考虑推推柿子。

\[\prod_{a=1}^n\prod_{b=1}^n\frac{lcm(a,b)}{a}*\frac{lcm(a,b)}{b}
\]

\[=\prod_{a=1}^n\prod_{b=1}^n\frac{lcm^2(a,b)}{ab}
\]

\[=\prod_{a=1}^n\prod_{b=1}^n\frac{ab}{gcd^2(a,b)}
\]

\[=\frac{(n!)^{2n}}{\prod_{a=1}^n\prod_{b=1}^ngcd^2(a,b)}
\]

现在问题是\(\prod_{a=1}^n\prod_{b=1}^ngcd(a,b)\)。

这个复杂度\(O(n^2)\),很不划算。

考虑枚举最大公约数的值。

则化为

\[\prod_{d=1}^nd^{\sum_{a=1}^n\sum_{b=1}^n[gcd(a,b)==d]}
\]

\[\prod_{d=1}^nd^{\sum_{a=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{b=1}^{\lfloor\frac{n}{d}\rfloor}[gcd(a,b)==1]}
\]

这个指数怎么化呢?

我们可以强制\(a>b\),那么指数为\(\sum_{a=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(a)\)

如果不强制,考虑到\(\varphi(1)=1\)的特殊情况,柿子可化为:

\[\prod_{d=1}^nd^{[\sum_{a=1}^{\lfloor\frac{n}{d}\rfloor}2*\varphi(a)]-1}
\]

然后线性预处理一下欧拉函数前缀和,这样复杂度\(O(Tn)\),\(60pts\)稳了。

然后吗,注意到\(\lfloor\frac{n}{d}\rfloor\)在一段区间内是相同的,可以数论分块。

于是就做完了。

预处理逆元后,复杂度\(O(T\sqrt n\))。

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int mod=19260817,N=1e6+100;
int a,b,jc[N],pri[N],ol[N],n,tot,inv[mod+100];
ll ans,gu;
bool vis[N];
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il ll ksm(re ll S,re ll n)
{
re ll T=S;S=1;
if(n<0) return 0;
while(n)
{
if(n&1) S=S*T%mod;
T=T*T%mod;
n>>=1;
}
return S;
}
il void Pre(re int n)
{
ol[1]=1;
fp(i,2,n)
{
if(!vis[i]) pri[++tot]=i,ol[i]=i-1;
for(re int j=1;j<=tot&&i*pri[j]<=n;++j)
{
vis[i*pri[j]]=1;
if(i%pri[j]) ol[i*pri[j]]=ol[i]*(pri[j]-1);
else {ol[i*pri[j]]=ol[i]*pri[j];break;}
}
}
fp(i,1,n) (ol[i]+=ol[i-1])%=(mod-1);
jc[0]=1;fp(i,1,n) jc[i]=1ll*jc[i-1]*i%mod;
inv[0]=inv[1]=1;fp(i,2,mod) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
}
int main()
{
re int T=gi();
Pre(1e6);
while(T--)
{
n=gi();
ans=ksm(jc[n],2*n);gu=1;
re int L=0;
for(re int i=1;i<=n;i=L+1)
{
L=n/(n/i);
(gu*=ksm(1ll*jc[L]*inv[jc[i-1]]%mod,2*ol[n/i]-1))%=mod;
}
(ans*=inv[gu*gu%mod])%=mod;
printf("%lld\n",ans);
}
return 0;
}

最新文章

  1. 神秘的 shadow-dom 浅析
  2. C#进阶系列——WebApi 身份认证解决方案:Basic基础认证
  3. localstorage 的属性改变问题
  4. Java中PreparedStatement与Statement的总结
  5. VR定制开发、AR定制开发(长年承接虚拟现实、增强现实应用、VR游戏定制开发,北京公司,可签合同)
  6. strust.xml
  7. mysql 数据导出 常用总结
  8. xutils 框架
  9. JSX架构及注释
  10. MySQL中MySQL X.X Command Line Client一闪而过的问题
  11. ebtables
  12. Linux下的编程实战【转】
  13. 暑假集训D9总结
  14. iOS----------随机色
  15. 构建之法 chapter 8 需求分析 ——读书心得
  16. 10.18 nslookup:域名查询工具
  17. AutoML相关论文
  18. JVM总结-垃圾回收(下)
  19. PHP可变函数
  20. Python开发【算法】:斐波那契数列两种时间复杂度

热门文章

  1. 【bzoj4260】 Codechef REBXOR trie树
  2. 库操作&amp;表操作
  3. 进程Queue、线程Queue、堆栈、生产者消费者模型
  4. 洛谷—— P1714 切蛋糕
  5. CF723E(欧拉回路)
  6. Mysql 数据库允许远程连接 服务器连接错误 Host &#39;XXX&#39; is not allowed to connect to this MySQL server
  7. 【APUE】关于信号的一些常用函数
  8. 弄技术要弄通-公司reis的pub/sub怎么使用的呢?
  9. 用"再生龙"Clonezilla 来克隆Linux系统
  10. Office WORD里插入图片,嵌入型只能显示一半怎么办