前言

在上一篇文章中,我主要是讲解了DAG阶段的处理,spark是如何将一个job根据宽窄依赖划分出多个stage的,在最后一步中是将生成的TaskSet提交给了TaskSchedulerInmpl的。

此次我们从taskScheduler.submitTasks开始讲,深入理解TaskScheduler的运行过程,这个地方是如何将taskSetManager和pool联系在一起的。

taskSetManager类继承了Schedulable,这个继承类是pool之间的桥梁,也是调度算法的桥梁。pool也继承了Schedulable,请带着疑问看源码吧。

taskScheduler.submitTasks(new TaskSet(
tasks.toArray, stage.id, stage.latestInfo.attemptId, jobId, properties))

taskScheduler.submitTasks()

  override def submitTasks(taskSet: TaskSet) {
val tasks = taskSet.tasks
logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
this.synchronized {
//创建TaskSetManager
val manager = createTaskSetManager(taskSet, maxTaskFailures)
val stage = taskSet.stageId
val stageTaskSets =
taskSetsByStageIdAndAttempt.getOrElseUpdate(stage, new HashMap[Int, TaskSetManager])
stageTaskSets(taskSet.stageAttemptId) = manager
val conflictingTaskSet = stageTaskSets.exists { case (_, ts) =>
ts.taskSet != taskSet && !ts.isZombie
}
if (conflictingTaskSet) {
throw new IllegalStateException(s"more than one active taskSet for stage $stage:" +
s" ${stageTaskSets.toSeq.map{_._2.taskSet.id}.mkString(",")}")
}
//将manager信息加入到调度器,这个地方是根据前面的调度算法,重写了addTaskSetManager方法。
schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties) if (!isLocal && !hasReceivedTask) {
starvationTimer.scheduleAtFixedRate(new TimerTask() {
override def run() {
if (!hasLaunchedTask) {
logWarning("Initial job has not accepted any resources; " +
"check your cluster UI to ensure that workers are registered " +
"and have sufficient resources")
} else {
this.cancel()
}
}
}, STARVATION_TIMEOUT_MS, STARVATION_TIMEOUT_MS)
}
hasReceivedTask = true
}
backend.reviveOffers()
}

CoarseGrainedSchedulerBackend.reviveOffers()

看到这是不是有些眼熟?如果你是先看的如何启动driver,如何启动app的,如何启动executor的,你可能就瞬间想起来了,因为在driver的时候就用了这个,只是他自己给我自己发送了一个空Object,进行验证而已。

回忆一下:CoarseGrainedSchedulerBackend的start会生成driverEndpoint,它是一个rpc的终端,一个RpcEndpoint接口,它由ThreadSafeRpcEndpoint接口实现,而ThreadSafeRpcEndpoint,CoarseGrainedSchedulerBackend的内部类DriverEndpoint实现。CoarseGrainedSchedulerBackend的reviveOffers就是发送给这个rpc的终端ReviveOffers信号,ReviveOffers就是一个case class。

CoarseGrainedSchedulerBackend.revive()

继续回忆一下:DriverEndpoint有两种发送信息的函数。一个是send,发送信息后不需要对方回复。一个是ask,发送信息后需要对方回复。 对应着,也有两种接收信息的函数。一个是receive,接收后不回复对方:

看源码可以看到,调用了makeOffers()方法

CoarseGrainedSchedulerBackend.makeOffers()

    private def makeOffers() {
// Filter out executors under killing
//过滤掉要被移除的和缺失的executor
val activeExecutors = executorDataMap.filterKeys(executorIsAlive)
//根据activeExecutors生成workOffers,
//即executor所能提供的资源信息
val workOffers = activeExecutors.map { case (id, executorData) =>
new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
}.toSeq
//scheduler.resourceOffers分配资源,
//并launchTasks发送任务
launchTasks(scheduler.resourceOffers(workOffers))
}

接下来让我们看看是如何给task分派资源的resourceOffers()方法,既然是给task分配资源那可定是TaskSchedulerImpl的事情了。

TaskSchedulerImpl.resourceOffers()

我们先梳理一下思路:

TaskSchedulerImpl.resourceOffers()整体任务资源分配===>resourceOfferSingleTaskSet()当个task任务分配===>TaskSetManager.resourceOffer()分配task

  def resourceOffers(offers: Seq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
// Mark each slave as alive and remember its hostname
// Also track if new executor is added
var newExecAvail = false
for (o <- offers) { //循环可用的每个workoffer的资源
executorIdToHost(o.executorId) = o.host //主机和executor进行绑定
executorIdToTaskCount.getOrElseUpdate(o.executorId, 0) //在每个executor上执行的task数量
if (!executorsByHost.contains(o.host)) {
executorsByHost(o.host) = new HashSet[String]()
executorAdded(o.executorId, o.host)
newExecAvail = true
}
//为每个主机添加或者更新任务跟踪者
for (rack <- getRackForHost(o.host)) {
hostsByRack.getOrElseUpdate(rack, new HashSet[String]()) += o.host
}
} // Randomly shuffle offers to avoid always placing tasks on the same set of workers.
// 为了避免将Task集中分配到某些机器,随机的打散它们
val shuffledOffers = Random.shuffle(offers)
// Build a list of tasks to assign to each worker.
//构建分配给每个worker的任务列表
val tasks = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores))
//记录各个worker的available Cpus
val availableCpus = shuffledOffers.map(o => o.cores).toArray
//获取按照调度策略排序好的TaskSetManager
val sortedTaskSets = rootPool.getSortedTaskSetQueue
for (taskSet <- sortedTaskSets) {
logDebug("parentName: %s, name: %s, runningTasks: %s".format(
taskSet.parent.name, taskSet.name, taskSet.runningTasks))
//如果有新的executor加入
//则需要从新计算TaskSetManager的就近原则
if (newExecAvail) {
taskSet.executorAdded()
}
} // Take each TaskSet in our scheduling order, and then offer it each node in increasing order
// of locality levels so that it gets a chance to launch local tasks on all of them.
// NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
var launchedTask = false
// 得到调度序列中的每个TaskSet,
// 然后按节点的locality级别增序分配资源
// Locality优先序列为: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
for (taskSet <- sortedTaskSets; maxLocality <- taskSet.myLocalityLevels) {
do {
//resourceOfferSingleTaskSet为单个TaskSet分配资源,
//若该LocalityLevel的节点下不能再为之分配资源了,
//则返回false
launchedTask = resourceOfferSingleTaskSet(
taskSet, maxLocality, shuffledOffers, availableCpus, tasks)
} while (launchedTask)
} if (tasks.size > 0) {
hasLaunchedTask = true
}
return tasks
}

TaskSchedulerImpl.resourceOffersSingleTaskSet()

单个TaskSet分配资源:

private def resourceOfferSingleTaskSet(
taskSet: TaskSetManager,
maxLocality: TaskLocality,
shuffledOffers: Seq[WorkerOffer],
availableCpus: Array[Int],
tasks: Seq[ArrayBuffer[TaskDescription]]) : Boolean = {
var launchedTask = false
for (i <- 0 until shuffledOffers.size) {
val execId = shuffledOffers(i).executorId
val host = shuffledOffers(i).host
if (availableCpus(i) >= CPUS_PER_TASK) {
try {
for (task <- taskSet.resourceOffer(execId, host, maxLocality)) {
tasks(i) += task
val tid = task.taskId
taskIdToTaskSetManager(tid) = taskSet
taskIdToExecutorId(tid) = execId
executorIdToTaskCount(execId) += 1
executorsByHost(host) += execId
availableCpus(i) -= CPUS_PER_TASK
assert(availableCpus(i) >= 0)
launchedTask = true
}
} catch {
case e: TaskNotSerializableException =>
logError(s"Resource offer failed, task set ${taskSet.name} was not serializable")
// Do not offer resources for this task, but don't throw an error to allow other
// task sets to be submitted.
return launchedTask
}
}
}
return launchedTask
}

TaskSetManager.resourceOffer()

根据TaskScheduler所提供的单个Resource资源包括host,executor和locality的要求返回一个合适的Task,TaskSetManager内部会根据上一个任务的成功提交的时间,自动调整自身的Locality匹配策略,如果上一次成功提交任务的时间间隔很长,则降低对Locality的要求(例如从最差要求Process Local降低为最差要求Node Local),反之则提高对Locality的要求。这一动态调整Locality的策略为了提高任务在最佳Locality的情况下得到运行的机会,因为Resource资源是在短期内分批提供给TaskSetManager的,动态调整Locality门槛有助于改善整体的Locality分布情况。

def resourceOffer(
execId: String,
host: String,
maxLocality: TaskLocality.TaskLocality)
: Option[TaskDescription] =
{
if (!isZombie) {
val curTime = clock.getTimeMillis() var allowedLocality = maxLocality if (maxLocality != TaskLocality.NO_PREF) {
allowedLocality = getAllowedLocalityLevel(curTime)
if (allowedLocality > maxLocality) {
// We're not allowed to search for farther-away tasks
allowedLocality = maxLocality
}
} dequeueTask(execId, host, allowedLocality) match {
case Some((index, taskLocality, speculative)) => {
// Found a task; do some bookkeeping and return a task description
val task = tasks(index)
val taskId = sched.newTaskId()
// Do various bookkeeping
copiesRunning(index) += 1
val attemptNum = taskAttempts(index).size
val info = new TaskInfo(taskId, index, attemptNum, curTime,
execId, host, taskLocality, speculative)
taskInfos(taskId) = info
taskAttempts(index) = info :: taskAttempts(index)
// Update our locality level for delay scheduling
// NO_PREF will not affect the variables related to delay scheduling
if (maxLocality != TaskLocality.NO_PREF) {
currentLocalityIndex = getLocalityIndex(taskLocality)
lastLaunchTime = curTime
}
// Serialize and return the task
val startTime = clock.getTimeMillis()
val serializedTask: ByteBuffer = try {
Task.serializeWithDependencies(task, sched.sc.addedFiles, sched.sc.addedJars, ser)
} catch {
// If the task cannot be serialized, then there's no point to re-attempt the task,
// as it will always fail. So just abort the whole task-set.
case NonFatal(e) =>
val msg = s"Failed to serialize task $taskId, not attempting to retry it."
logError(msg, e)
abort(s"$msg Exception during serialization: $e")
throw new TaskNotSerializableException(e)
}
if (serializedTask.limit > TaskSetManager.TASK_SIZE_TO_WARN_KB * 1024 &&
!emittedTaskSizeWarning) {
emittedTaskSizeWarning = true
logWarning(s"Stage ${task.stageId} contains a task of very large size " +
s"(${serializedTask.limit / 1024} KB). The maximum recommended task size is " +
s"${TaskSetManager.TASK_SIZE_TO_WARN_KB} KB.")
}
addRunningTask(taskId) // We used to log the time it takes to serialize the task, but task size is already
// a good proxy to task serialization time.
// val timeTaken = clock.getTime() - startTime
val taskName = s"task ${info.id} in stage ${taskSet.id}"
logInfo(s"Starting $taskName (TID $taskId, $host, partition ${task.partitionId}," +
s"$taskLocality, ${serializedTask.limit} bytes)") sched.dagScheduler.taskStarted(task, info)
return Some(new TaskDescription(taskId = taskId, attemptNumber = attemptNum, execId,
taskName, index, serializedTask))
}
case _ =>
}
}
None
}

resourceOffer()

CoarseGrainedSchedulerBackend.DriverEndpoint.launchTasks

launchTasks(scheduler.resourceOffers(workOffers))

这时我们在继续看一下lanchTasks这个

    private def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
for (task <- tasks.flatten) {
val serializedTask = ser.serialize(task)
//若序列话Task大小达到Rpc限制,则停止。
if (serializedTask.limit >= akkaFrameSize - AkkaUtils.reservedSizeBytes) {
scheduler.taskIdToTaskSetManager.get(task.taskId).foreach { taskSetMgr =>
try {
var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
"spark.akka.frameSize (%d bytes) - reserved (%d bytes). Consider increasing " +
"spark.akka.frameSize or using broadcast variables for large values."
msg = msg.format(task.taskId, task.index, serializedTask.limit, akkaFrameSize,
AkkaUtils.reservedSizeBytes)
taskSetMgr.abort(msg)
} catch {
case e: Exception => logError("Exception in error callback", e)
}
}
}
else {
val executorData = executorDataMap(task.executorId)
// 减少改task所对应的executor信息的core数量
executorData.freeCores -= scheduler.CPUS_PER_TASK
//向executorEndpoint 发送LaunchTask 信号
executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask)))
}
}
}

executorEndpoint接收到LaunchTask信号(包含SerializableBuffer(serializedTask) )后,会开始执行任务。这样task就发送到了对应的executor上了。至此,TaskScheduler在发送任务给executor前的工作就全部完成了。

最新文章

  1. 远程登录VirtualBox虚拟机Linux
  2. 实用的CSS3属性和使用技巧
  3. css+div绝对定位
  4. openwrt: Makefile 框架分析
  5. BootStrap glyphicons字体图标
  6. Codeforces Round #263
  7. C++学习笔记13-类继承
  8. Hibernate乐观锁和悲观锁
  9. dfs.datanode.max.transfer.threads
  10. 基于Dubbo的压测调优实例
  11. AVL Tree Deletion
  12. Python: 内置私有方法
  13. Redis事物
  14. python小练习---TCP客户端
  15. Redis自学笔记:3.6入门-有序集合类型
  16. 【问题解决:Mysql操作容量限制问题】Error updating database. Cause: com.mysql.jdbc.PacketTooBigException: Packet for query is too large (1082 &gt; 1024)
  17. 20155330 《网络对抗》 Exp6 信息搜集与漏洞扫描
  18. 使用Servlet发布WebService
  19. 转 kafka架构简介
  20. Linq 实现两个对象实例List之间的赋值

热门文章

  1. Windows 下Hadoop的环境变量配置
  2. will-change
  3. LeetCode 笔记系列七 Substring with Concatenation of All Words
  4. fullpage.js全屏滚动插件使用方法
  5. 解决&lt;pre&gt;标签里的文本换行(兼容IE, FF和Opera等)
  6. Ubuntu 16.04 安装 Gnome 桌面环境
  7. DPK750针式打印机驱动,750u.dll下载
  8. ionic 移动开发性能调优-去除动画
  9. 4.1 - FTP文件上传下载
  10. 【opencv】projectPoints 三维点到二维点 重投影误差计算