1、知识点

"""
DCGAN:相比GAN而言,使用了卷积网络替代全连接
卷积:256*256*3 --- > 28*28*14 -->结果 ,即H,W变小,特征图变多
反卷积(就是把卷积的前向和反向传播完全颠倒了) :4*4*1024 ---> 28 * 28 *1 -->结果 即H,W变大,特征图变少 特点:
1、判别模型:使用带步长的卷积(strided convolutions)取代了的空间池化(spatial pooling),容许网络学习自己的空间下采样(spatial downsampling)。
2、生成模型:使用微步幅卷积(fractional strided),容许它学习自己的空间上采样(spatial upsampling)。
3、激活函数: LeakyReLU
4、Batch Normalization 批标准化:解决因糟糕的初始化引起的训练问题,使得梯度能传播更深层次。 Batch Normalization证明了生成模型初始化的重要性,避免生成模型崩溃:生成的所有样本都在一个点上(样本相同),这是训练GANs经常遇到的失败现象。

简而言之,DCGAN是利用数据生成图片的过程
"""

2、代码

# coding: utf-8
import numpy as np
import tensorflow as tf
import pickle
import matplotlib.pyplot as plt
get_ipython().run_line_magic('matplotlib', 'inline') from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('/MNIST_data/') # ## 获得数据 # In[4]: def get_inputs(noise_dim, image_height, image_width, image_depth): inputs_real = tf.placeholder(tf.float32, [None, image_height, image_width, image_depth], name='inputs_real')
inputs_noise = tf.placeholder(tf.float32, [None, noise_dim], name='inputs_noise') return inputs_real, inputs_noise # # 生成器 # In[5]: def get_generator(noise_img, output_dim, is_train=True, alpha=0.01): with tf.variable_scope("generator", reuse=(not is_train)):
# 100 x 1 to 4 x 4 x 512
# 全连接层
layer1 = tf.layers.dense(noise_img, 4*4*512)
layer1 = tf.reshape(layer1, [-1, 4, 4, 512])
# batch normalization
layer1 = tf.layers.batch_normalization(layer1, training=is_train)
# Leaky ReLU
layer1 = tf.maximum(alpha * layer1, layer1)
# dropout
layer1 = tf.nn.dropout(layer1, keep_prob=0.8) # 4 x 4 x 512 to 7 x 7 x 256
layer2 = tf.layers.conv2d_transpose(layer1, 256, 4, strides=1, padding='valid')
layer2 = tf.layers.batch_normalization(layer2, training=is_train)
layer2 = tf.maximum(alpha * layer2, layer2)
layer2 = tf.nn.dropout(layer2, keep_prob=0.8) # 7 x 7 256 to 14 x 14 x 128
layer3 = tf.layers.conv2d_transpose(layer2, 128, 3, strides=2, padding='same')
layer3 = tf.layers.batch_normalization(layer3, training=is_train)
layer3 = tf.maximum(alpha * layer3, layer3)
layer3 = tf.nn.dropout(layer3, keep_prob=0.8) # 14 x 14 x 128 to 28 x 28 x 1
logits = tf.layers.conv2d_transpose(layer3, output_dim, 3, strides=2, padding='same')
# MNIST原始数据集的像素范围在0-1,这里的生成图片范围为(-1,1)
# 因此在训练时,记住要把MNIST像素范围进行resize
outputs = tf.tanh(logits) return outputs # ## 判别器 # In[6]: def get_discriminator(inputs_img, reuse=False, alpha=0.01): with tf.variable_scope("discriminator", reuse=reuse):
# 28 x 28 x 1 to 14 x 14 x 128
# 第一层不加入BN
layer1 = tf.layers.conv2d(inputs_img, 128, 3, strides=2, padding='same')
layer1 = tf.maximum(alpha * layer1, layer1)
layer1 = tf.nn.dropout(layer1, keep_prob=0.8) # 14 x 14 x 128 to 7 x 7 x 256
layer2 = tf.layers.conv2d(layer1, 256, 3, strides=2, padding='same')
layer2 = tf.layers.batch_normalization(layer2, training=True)
layer2 = tf.maximum(alpha * layer2, layer2)
layer2 = tf.nn.dropout(layer2, keep_prob=0.8) # 7 x 7 x 256 to 4 x 4 x 512
layer3 = tf.layers.conv2d(layer2, 512, 3, strides=2, padding='same')
layer3 = tf.layers.batch_normalization(layer3, training=True)
layer3 = tf.maximum(alpha * layer3, layer3)
layer3 = tf.nn.dropout(layer3, keep_prob=0.8) # 4 x 4 x 512 to 4*4*512 x 1
flatten = tf.reshape(layer3, (-1, 4*4*512))
logits = tf.layers.dense(flatten, 1)
outputs = tf.sigmoid(logits) return logits, outputs # ## 目标函数 # In[7]: def get_loss(inputs_real, inputs_noise, image_depth, smooth=0.1): g_outputs = get_generator(inputs_noise, image_depth, is_train=True)
d_logits_real, d_outputs_real = get_discriminator(inputs_real)
d_logits_fake, d_outputs_fake = get_discriminator(g_outputs, reuse=True) # 计算Loss
g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels=tf.ones_like(d_outputs_fake)*(1-smooth))) d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real,
labels=tf.ones_like(d_outputs_real)*(1-smooth)))
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels=tf.zeros_like(d_outputs_fake)))
d_loss = tf.add(d_loss_real, d_loss_fake) return g_loss, d_loss # ## 优化器 # In[8]: def get_optimizer(g_loss, d_loss, beta1=0.4, learning_rate=0.001): train_vars = tf.trainable_variables() g_vars = [var for var in train_vars if var.name.startswith("generator")]
d_vars = [var for var in train_vars if var.name.startswith("discriminator")] # Optimizer
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
g_opt = tf.train.AdamOptimizer(learning_rate).minimize(g_loss, var_list=g_vars)
d_opt = tf.train.AdamOptimizer(learning_rate).minimize(d_loss, var_list=d_vars) return g_opt, d_opt # In[9]: def plot_images(samples):
fig, axes = plt.subplots(nrows=1, ncols=25, sharex=True, sharey=True, figsize=(50,2))
for img, ax in zip(samples, axes):
ax.imshow(img.reshape((28, 28)), cmap='Greys_r')
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
fig.tight_layout(pad=0) # In[10]: def show_generator_output(sess, n_images, inputs_noise, output_dim): cmap = 'Greys_r'
noise_shape = inputs_noise.get_shape().as_list()[-1]
# 生成噪声图片
examples_noise = np.random.uniform(-1, 1, size=[n_images, noise_shape]) samples = sess.run(get_generator(inputs_noise, output_dim, False),
feed_dict={inputs_noise: examples_noise}) result = np.squeeze(samples, -1)
return result # ## 训练网络 # In[11]: # 定义参数
batch_size = 64
noise_size = 100
epochs = 5
n_samples = 25
learning_rate = 0.001 # In[12]: def train(noise_size, data_shape, batch_size, n_samples): # 存储loss
losses = []
steps = 0 inputs_real, inputs_noise = get_inputs(noise_size, data_shape[1], data_shape[2], data_shape[3])
g_loss, d_loss = get_loss(inputs_real, inputs_noise, data_shape[-1])
g_train_opt, d_train_opt = get_optimizer(g_loss, d_loss, beta1, learning_rate) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# 迭代epoch
for e in range(epochs):
for batch_i in range(mnist.train.num_examples//batch_size):
steps += 1
batch = mnist.train.next_batch(batch_size) batch_images = batch[0].reshape((batch_size, data_shape[1], data_shape[2], data_shape[3]))
# scale to -1, 1
batch_images = batch_images * 2 - 1 # noise
batch_noise = np.random.uniform(-1, 1, size=(batch_size, noise_size)) # run optimizer
_ = sess.run(g_train_opt, feed_dict={inputs_real: batch_images,
inputs_noise: batch_noise})
_ = sess.run(d_train_opt, feed_dict={inputs_real: batch_images,
inputs_noise: batch_noise}) if steps % 101 == 0:
train_loss_d = d_loss.eval({inputs_real: batch_images,
inputs_noise: batch_noise})
train_loss_g = g_loss.eval({inputs_real: batch_images,
inputs_noise: batch_noise})
losses.append((train_loss_d, train_loss_g))
# 显示图片
samples = show_generator_output(sess, n_samples, inputs_noise, data_shape[-1])
plot_images(samples)
print("Epoch {}/{}....".format(e+1, epochs),
"Discriminator Loss: {:.4f}....".format(train_loss_d),
"Generator Loss: {:.4f}....". format(train_loss_g)) # In[13]: with tf.Graph().as_default():
train(noise_size, [-1, 28, 28, 1], batch_size, n_samples)

3、结构图

最新文章

  1. android自定义控件(8)-利用onMeasure测量使图片拉伸永不变形,解决屏幕适配问题
  2. webApp 开发技术要点总结
  3. 加强型无穷集合:InfiniteList<T>,可指定遍历方向和偏移量,只要集合有元素并且偏移量不为 0,将永远遍历下去。
  4. epoll在socket通信中的应用
  5. 华为OJ平台——查找组成一个偶数最接近的两个素数
  6. 用dubbo+zookeeper+spring搭建一个简单的http接口程序
  7. SSH的Eclips环境搭建
  8. Slf4j与其他日志系统兼容的使用
  9. udp协议的数据接收与发送的代码
  10. 芝麻HTTP:Python爬虫入门之URLError异常处理
  11. Hibernate与JPA的区别是什么
  12. RDIFramework.NET V3.3 WinForm版角色授权管理新增角色对操作权限项、模块起止生效日期的设置
  13. Carthage入门篇-安装和使用
  14. 行为驱动:Cucumber + Selenium + Java(三) - 使用标签实现测试分组
  15. SpringBoot swagger-ui.html 配置类继承 WebMvcConfigurationSupport 类后 请求404
  16. P3317 [SDOI2014]重建(Matrix-tree+期望)
  17. centos命令行系列之centos6防火墙的关闭以及开启
  18. android kl文件
  19. POJ 1142:Smith Numbers(分解质因数)
  20. UT源码162

热门文章

  1. 2. An Array of Sequences
  2. GoTests工具自动化test使用
  3. Fiddler抓包HTTPS捕捉旧版App
  4. Java NIO 学习笔记一
  5. Matlab---绘图中坐标系显示设置
  6. 牛客小白月赛19 E 「火」烈火燎原 (思维,树)
  7. switch结构
  8. C# 对象和类型(2) 持续更新
  9. Navicat Premium 12 安装 与 激活
  10. 3、docker常用命令:help、镜像命令、容器命令