原文链接 https://www.cnblogs.com/cly-none/p/9794411.html

\[\newcommand{\stif}[2]{\left[ \begin{matrix} #1 \\ #2 \end{matrix} \right]}
\newcommand{\stis}[2]{\left\{ \begin{matrix} #1 \\ #2 \end{matrix} \right\}}
\newcommand{\comb}[2]{\left( \begin{matrix} #1 \\ #2 \end{matrix} \right)}
\newcommand{\floor}[1]{\left\lfloor #1 \right\rfloor}
\newcommand{\ceil}[1]{\left\lceil #1 \right\rceil}
\]

题意:给出一棵有\(n\)个结点的树\(T = \{V,E\}\)和\(V\)的一个子集\(U\)。定义一个结点的集合\(S\)合法当且仅当\(S\)能表示为\(\left\{ y \ | \ y \in V, \, dis(x,y) \leq d \right\}\)的形式,其中\(x \in U, d \in N\)。求一共有多少个合法的集合。

\(n \leq 10^5\)

先考虑\(V = U\)的情况。

首先,一个合法集合\(S\)可能被多组\((x,d)\)所表达。要对\(S\)进行计数,就必须规定某个额外限制,让它只能被一组\((x,d)\)表达。然后,通过对\((x,d)\)计数得到合法\(S\)的数量。

很容易想到\(S\)所表示的树上联通块的直径。当然,直径有可能不是唯一的。设这个长度是\(l\)。

  • \(l\)为偶数。那么,能确定这个联通块的所有直径有一个共同的中点,设为\(x\)。显然\(x\)存在,且是唯一的,且\(S\)就能被\((x,\frac l 2)\)所表达。换句话说,对于每个\(x\),只要\(d\)保证\(x\)是唯一的中点,那么所有\((x,d)\)与所有\(l\)为偶数的合法集合\(S\)是一一对应的。更确切地说,就是要求\(d\)不超过以\(x\)为根时,\(x\)所有儿子中第二深的子树深度。
  • \(l\)为奇数。我们发现,\(S\)的直径的中点在一条边上。记离这个中点最近的结点为\(x\)和\(y\)。这就比较麻烦了。我们不妨从另一角度考虑:\(\ceil {\frac l 2}\)一定等于以\(x\)为根时\(x\)所有儿子中第二深的子树深度+1。考虑以\(x\)为根的情况,则\(y\)为\(x\)子树深度最大的孩子结点。\((x,\ceil {\frac l 2})\)所表示的集合,与\((y, \ceil {\frac l 2}\)所表示的集合相同,等价于\(y\)的子树中没有有到\(y\)距离大于等于\(\ceil {\frac l 2}\)的结点,也就是\((x, \ceil {\frac l 2}\)覆盖了整棵树。否则\((x,\ceil {\frac l 2}\)又能唯一确定一个合法集合。

整理一下。对于每个结点\(x\),令\(D\)为以\(x\)为根时,\(x\)所有儿子中第二深的子树深度。则取\(d \leq D\)时,能表示所有直径为偶数的合法集合。假如取\(d = D + 1\)不会覆盖整棵树,那么还有一个合法集合。最后再考虑有没有少算了整棵树的情况。(假如这个树的直径为偶数,那么它已经被算过了)简单起见,前面的计算全部不计覆盖整棵树的情况,最后再+1就可以了。

for each x in V:
let d1 to be the first largest deepth of subtrees of x
let d2 to be the second largest deepth of subtrees of x
ans = ans + d2 + 1
if d1 > d2 + 1:
ans = ans + 1
if d1 == d2:
ans = ans - 1
ans = ans + 1

这样,通过\(O(n)\)树dp求出所有d1和d2,我们就完成了\(V = U\)的部分分。

然后就是\(U \subsetneq V\)的情况。称\(U\)中的结点为关键点。

如果要重新考虑每个\(x\)的\(d\)能取到多少,相当棘手。事实上,上面不少结论都会变成错误的。

又要转换一下思路。对于一个非关键点\(x\),如果\((x,d_0)\)能被某个关键点表达出来,那么,原来所有被计数的\((x,d), \, d \geq d_0\)也同样能被表达出来。记对于\(x\)最小的\(d_0\)为\(low_x\)。

然后就是要求所有\(low_x\)了。设表达出\((x,low_x)\)的关键点为\(y\)。考虑以\(x\)为根,那么\(low_x\)一定不小于\(y\)所在子树的最大深度。但只要\(low_x\)超过这个深度,\((x,low_x)\)就能被\((y,low_x + dis(x,y))\)表示出来,且按照原来的方法,这个\((y,low_x+dis(x,y))\)是不会被计数的因此,故不用担心算重的问题。那么,\(low_x\)就是以\(x\)为根时,含有关键点的深度最小的\(x\)的孩子的子树。同样可以\(O(n)\)求出。

#include <bits/stdc++.h>
using namespace std;
const int N = 200010, INF = 0x3f3f3f3f;
struct edge {
int la,b;
} con[N << 1];
int tot,fir[N];
void add(int from,int to) {
con[++tot] = (edge) {fir[from],to};
fir[from] = tot;
}
int n,mxdep[N][2],hson[N],sz[N],low[N];
char s[N];
long long ans;
void dfs(int pos,int fa) {
sz[pos] = s[pos] - '0';
mxdep[pos][0] = 0;
mxdep[pos][1] = - INF;
hson[pos] = 0;
for (int i = fir[pos] ; i ; i = con[i].la) {
if (con[i].b == fa) continue;
dfs(con[i].b,pos);
sz[pos] += sz[con[i].b];
if (mxdep[con[i].b][0] > mxdep[hson[pos]][0] || (!hson[pos]))
hson[pos] = con[i].b;
if (mxdep[con[i].b][0]+1 > mxdep[pos][0]) {
mxdep[pos][1] = mxdep[pos][0];
mxdep[pos][0] = mxdep[con[i].b][0] + 1;
} else mxdep[pos][1] = max(mxdep[pos][1],mxdep[con[i].b][0] + 1);
if (sz[con[i].b]) low[pos] = min(low[pos],mxdep[con[i].b][0] + 1);
}
}
void fsd(int pos,int fa) {
for (int i = fir[pos] ; i ; i = con[i].la) {
if (con[i].b == fa) continue;
int val = (con[i].b == hson[pos] ? mxdep[pos][1] : mxdep[pos][0]) + 1;
if (val > mxdep[con[i].b][0]) {
mxdep[con[i].b][1] = mxdep[con[i].b][0];
mxdep[con[i].b][0] = val;
hson[con[i].b] = pos;
} else mxdep[con[i].b][1] = max(mxdep[con[i].b][1],val);
if (sz[1] - sz[con[i].b] > 0)
low[con[i].b] = min(low[con[i].b],val);
fsd(con[i].b,pos);
}
}
int main() {
int x,y;
scanf("%d",&n);
for (int i = 1 ; i < n ; ++ i) {
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
scanf("%s",s+1);
memset(low,0x3f,sizeof low);
dfs(1,0);
fsd(1,0);
for (int i = 1 ; i <= n ; ++ i) {
int tmp = mxdep[i][1] + 1;
if (mxdep[i][0] > mxdep[i][1] + 1)
++ tmp;
if (mxdep[i][0] == mxdep[i][1]) -- tmp;
if (s[i] - '0' == 0) tmp -= low[i];
ans += max(tmp,0);
}
printf("%lld\n",ans+1);
return 0;
}

小结:这类复杂的思维题高度要求思维的清晰,思路一不留神就会混乱。清晰的思维,这确乎需要长期的锻炼。

最新文章

  1. python学习心得第一章
  2. 一 java线程的等待/通知模型
  3. Web安全开发注意事项
  4. JS 原型继承的几种方法
  5. ASP.NET MVC 中实现View与Controller分离
  6. Jquery 获取checkbox的checked问题
  7. highcharts图表组件入门教程:如何监听柱状图柱子点击事件动态更新当前数据点数值和所对应X轴刻度
  8. 长安大学ACM竞赛部
  9. Android通过WebService实现图片的上传和下载(一)
  10. FPGA图像处理之行缓存(linebuffer)的设计一
  11. 我的第一个python web开发框架(26)——定制ORM(二)
  12. HYSBZ2565最长双回文串 Manacher
  13. Extjs 项目中常用的小技巧,也许你用得着(3)
  14. input 属性radio中设置checked 不生效
  15. 【nodejs】让nodejs像后端mvc框架(asp.net mvc)一orm篇【如EF般丝滑】typeorm介绍(8/8)
  16. Shell 脚本编程基础
  17. 2.2 BIOS中断
  18. 几个方便进行micro frontend 开发的工具&amp;&amp;类库
  19. Introduction to 3D Game Programming with DirectX 11 翻译--开篇
  20. Only the original thread that created a view hierarchy can touch its views解决办法

热门文章

  1. Unity使用协程技术制作倒计时器
  2. Keras 资料
  3. codeforces 979A Pizza, Pizza, Pizza!!!
  4. loadRunner手动关联,通过 web_reg_save_param()函数
  5. 英文名为什么最好不用joe?JOE英文名的寓意是什么?
  6. 以太坊智能合约开发,Web3.js API 中文文档 ethereum web3.js入门说明
  7. flask 的session
  8. 记账本微信小程序开发一
  9. Hadoop学习笔记之六:HDFS功能逻辑(2)
  10. mxnet下如何查看中间结果