欢迎关注我的公众号 [极智视界],回复001获取Google编程规范

O_o>_<   o_OO_o~_~o_O

  大家好,我是极智视界,本文剖析一下 KL 对称量化算法实现,以 Tengine 的实现为例。

   前面已经写过一篇《【模型推理】量化实现分享一:详解 min-max 对称量化算法实现》,有兴趣的同学可以查阅。这是上一篇的续集,也是量化实现详解的第二篇。

   量化背景就不多做介绍了,之前的文章中也说的比较多了,直接开始吧。

1、KL 量化原理

   KL 量化是用 KL 散度来衡量真实数据分布和量化数据分布之间的相似性的量化方法,是英伟达 TensorRT 中对于激活值采用的量化策略,KL 量化的主要逻辑如下:

  • KL 和 MIN-MAX 不一样,不是直接将[min, max] 映射到 [-127, 127],而是去寻找一个阈值 |T| < max(|max|, |min|),将其 [-T, T] 映射到 [-127, 127]。认为只要阈值选取得当,就能将阈值以外的值舍弃掉,也不会对精度损失造成大的影响;

  • 超出阈值 ±|T| 以外的值直接映射为阈值,如上图中的三个红色点,直接映射为 -127,这种映射关系称为是饱和的。

  KL 量化方法试图将 float32 数值分布和 int8 数值分布抽象成两个分布,用阈值 |T| 来更新这两个数值分布,并用 KL 散度来衡量这两个分布的相似性,若 KL 散度值越小,说明这两个分布越相似,也就说明这个阈值 |T| 选择的最好。对于对称量化来说,根据这个阈值就能算出 Scale,而 Zero_point 始终为零。

  下面的图是 TensorRT 中的关于 KL 散度校准的伪代码,这个图也完美诠释了 KLD 整个量化过程。(标记一下下图为图二,后面会调用)

2、KL 量化实现

   这里还是以 Tengine 中 KL 量化的实现进行说明。

  捋一下主要有以下几个流程:

   (1) 激活值量化:先求 min、max,再用 KL 策略搜索量化生成激活值校准表。fp32toint8;

  (2) 权值量化:使用 min-max 量化策略。fp32toint8;

   (3) 偏置量化:延用激活值量化 scale 进行 int32 量化。fp32toint32;

  权值和偏置的量化比激活值量化多一步,除了要计算 Scale 外,还需要对值应用 Scale 进行直接量化以生成 int8 tmfile。

   在 Tengine 中实现 KL 量化的主要代码如下:

case ALGORITHM_KL:{
   if (quant_tool.scale_file.empty()){
       quant_tool.scale_file = "table_kl.scale";
       quant_tool.activation_quant_tool();
  }
   save_graph_i8_perchannel(quant_tool.model_file.c_str(), quant_tool.scale_file.c_str(), quant_tool.output_file, quant_tool.inplace, false);
   /* Evaluate quantitative losses */
   if (quant_tool.evaluate){
       fprintf(stderr, "[Quant Tools Info]: Step Evaluate, evaluate quantitative losses\n");
       quant_tool.assess_quant_loss(0);
  }
   break;
}

   其中最主要的量化搜索策略接口是 quant_tool.activation_quant_tool()save_graph_i8_perchannel,对于 KL 量化来说这两个接口分别做了两件事:

   (1) 激活值量化,生成 table_kl.scale

   (2) 权值&偏置量化,生成 scale_weight.txtscale_bias.txt 和 int8 tmfile;

  由于激活值量化中的 min、max 计算方式 及 权值&偏置量化过程,KL 量化和 MIN-MAX 量化逻辑相同且共用相同代码,这里就不展开介绍了,这部分有兴趣的同学可以查阅 《【模型推理】量化实现分享一:详解 min-max 对称量化算法实现》,这里主要介绍激活值量化中的 KL 量化搜索策略。

   KL 量化搜索策略的入口在这:

quant_tool.activation_quant_tool();

  然后会先做 min、max 的比较搜索,主要用了 std::max_elementstd::min_element 接口,这里不多说,得到 min、max 值后开启 KL 搜索策略。

2.1 勾勒概率直方图

  做第一轮勾勒概率直方图,进行第一轮的 KL 计算,第二轮开始不用重新勾勒概率直方图,而是在第一轮构建的概率直方图上进行迭代,所以你的校准图片数量越多,这个最终得到的概率直方图会越逼近真实分布。


/* calculate hist */
uint32_t inum = 0;
for (int i = 0; i < ir_graph->tensor_num; i++){
   struct tensor* ir_tensor = ir_graph->tensor_list[i];
   if (ir_tensor->tensor_type == TENSOR_TYPE_VAR || ir_tensor->tensor_type == TENSOR_TYPE_INPUT){
       float step_max = std::abs(max_activation[i]);
       if (std::abs(min_activation[i]) > step_max)
           step_max = std::abs(min_activation[i]);
       float step_bin = step_max / 2048.0f;

       std::vector<float> every_edge;
       if (nums == imgs_list.size() - 1){
           for (int j = 0; j < 2048; j++){
               float edge_float = (step_bin * (j + 0.5f));
               every_edge.push_back(edge_float);
          }
           hist_edge.push_back(every_edge);
           hist_gram.push_back(histCount((float*)ir_tensor->data, ir_tensor->elem_num, step_max));
      }
       else{
           std::vector<uint32_t> hist_tmp;
           hist_tmp = histCount((float*)ir_tensor->data, ir_tensor->elem_num, step_max);
           for (int j = 0; j < 2048; j++){
               hist_gram[inum][j] += hist_tmp[j];}
      }
       tensor_hist[i] = inum;
       hist_tensor[inum] = i;
       inum++;}
}

   来看以下 histCount 接口:

std::vector<uint32_t> histCount(float* data, uint32_t elem_num, float abs_max){
   float bin_scale = abs_max / 2047.f;
   int bin_zp = 0;
   std::vector<uint32_t> hist(2048);
   for (int i = 0; i < elem_num; i++){
       if (data[i] != 0){
           uint32_t hist_idx = round(std::abs(data[i]) / bin_scale);
           hist[hist_idx]++;}
  }
   return hist;
}

  最后对得到的概率直方图做一个归一化处理:

distribution = normalize_histogram(distribution_in);

   直方图归一化的实现接口也很简单:

std::vector<float> normalize_histogram(std::vector<uint32_t>& histogram){
   std::vector<float> histogram_out(histogram.size());
   const size_t length = histogram.size();
   float sum = 0;
   for (size_t i = 1; i < length; i++)
       sum += histogram[i];

   for (size_t i = 1; i < length; i++)
       histogram_out[i] = float(histogram[i] / sum);

   return histogram_out;
}

2.2 计算 P

  接下来的逻辑需要回头看一下图二,先计算 P 再计算 Q 最后计算 KL 散度。

   先是计算模拟量化分布 P,从 target_bin = 128 --> 2048 递增检索,溢出部分映射到边缘处理,可以把 P 认为是量化前 fp32 数据分布,即真实分布:

// get P
fill(quantize_distribution.begin(), quantize_distribution.end(), 0.0f);
const float num_per_bin = static_cast<float>(threshold) / static_cast<float>(target_bin);

for (int i = 0; i < target_bin; i++){
   const float start = static_cast<float>(i) * num_per_bin;
   const float end = start + num_per_bin;

   const int left_upper = static_cast<int>(ceil(start));
   if (static_cast<float>(left_upper) > start){
       const float left_scale = static_cast<float>(left_upper) - start;
       quantize_distribution[i] += left_scale * distribution[left_upper - 1];
  }

   const int right_lower = static_cast<int>(floor(end));

   if (static_cast<float>(right_lower) < end){
       const float right_scale = end - static_cast<float>(right_lower);
       quantize_distribution[i] += right_scale * distribution[right_lower];
  }

   for (int j = left_upper; j < right_lower; j++){
       quantize_distribution[i] += distribution[j];}
}

2.2 计算 Q

   然后是计算真实量化分布 Q,伴随 P 从 target_bin = 128 --> 2048 递增检索,可以把 Q 认为是量化后 int8 数据分布,即量化分布:

// get Q
std::vector<float> expand_distribution(threshold, 0);
for (int i = 0; i < target_bin; i++){
   const float start = static_cast<float>(i) * num_per_bin;
   const float end = start + num_per_bin;
   float count = 0;

   const int left_upper = static_cast<int>(ceil(start));
   float left_scale = 0;
   if (static_cast<float>(left_upper) > start){
       left_scale = static_cast<float>(left_upper) - start;
       if (distribution[left_upper - 1] != 0){
           count += left_scale;}
  }

   const int right_lower = static_cast<int>(floor(end));
   float right_scale = 0;
   if (static_cast<float>(right_lower) < end){
       right_scale = end - static_cast<float>(right_lower);
       if (distribution[right_lower] != 0){
           count += right_scale;}
  }

   for (int j = left_upper; j < right_lower; j++){
       if (distribution[j] != 0){
           count++;}
  }

   const float expand_value = quantize_distribution[i] / count;

   if (static_cast<float>(left_upper) > start){
       if (distribution[left_upper - 1] != 0){
           expand_distribution[left_upper - 1] += expand_value * left_scale;}
  }
   if (static_cast<float>(right_lower) < end){
       if (distribution[right_lower] != 0){
           expand_distribution[right_lower] += expand_value * right_scale;}
  }
   for (int j = left_upper; j < right_lower; j++){
       if (distribution[j] != 0){
           expand_distribution[j] += expand_value;}}
}

2.3 计算 KL 散度

  接下来是计算真实分布 P 和量化分布 Q 的 KL 散度:

const float kl_divergence = compute_kl_divergence(t_distribution, expand_distribution);

   实现 KL 散度计算的接口也很简单:

float compute_kl_divergence(std::vector<float>& dist_a, std::vector<float>& dist_b){
   const size_t length = dist_a.size();
   float result = 0;

   for (size_t i = 0; i < length; i++){
       if (dist_a[i] != 0){
           if (dist_b[i] == 0){
               result += 1;
          }
           else{
               result += dist_a[i] * log(dist_a[i] / dist_b[i]);}}
  }
   return result;
}

  最终我们是想找到一个使 KL 散度最小的 target_bin,由于是在 128 --> 2048 的循环中检索的,所以这个实现可以这么写:

// the best num of bin
if (kl_divergence < min_kl_divergence)
{
  min_kl_divergence = kl_divergence;
  target_threshold = threshold;
}

   这样就得到了我们梦寐以求的那个 target_bin,也就是这里的 target_threshold。

2.4 计算 Scale

  在计算得到 target_threshold 后,再去计算 Scale 就很简单了,直接这样就好了。

float act_scale = hist_edge[i][threshold_bin] / fake_quant_set;    // fake_quant_set = 127
int act_zero_point = 0;

  重申,由于是对称量化,所以只需计算 Scale,Zero_point 始终为零。

  然后就可以保存我们的激活值量化校准表 table_kl.scale 了,再次重申,后面的权值&偏置量化方法和 MIN-MAX 的一致,而 MIN-MAX 的量化方法我在前面的文章中已经介绍过,这里就不多赘述。

  以上就完成了实用的 KL 散度量化算法的实现,希望我的分享能对你的学习有一点帮助。

【公众号传送】

【模型推理】量化实现分享二:详解 KL 对称量化算法实现

最新文章

  1. awk删除文件第一列
  2. PHP中使用cURL实现Get和Post请求的方法
  3. Laravel 之Service Providers
  4. Masonry介绍与使用实践(快速上手Autolayout)
  5. C++-继承名称的掩盖
  6. unity,UNITY_PROJ_COORD和tex2Dproj
  7. swift基本语法
  8. codeforce vk cup2017
  9. 苹果新的编程语言 Swift 语言进阶(十)--类的继承
  10. javascript 面向对象-面试题实例
  11. oracle --hint总结
  12. Python全栈学习_day007作业
  13. python - class类(归一化设计)
  14. JAVA-JSP内置对象之session对象
  15. linux crontab 实现每秒执行的实例
  16. C# mysql 连接Apache Doris
  17. php处理行业分类数据
  18. ubuntu安装GraphicsMagick
  19. 《从零开始学Swift》学习笔记(Day 39)——构造函数重载
  20. python基础里的那些为什么?

热门文章

  1. idea明明设置了utf-8, 但是提交的配置文件到远程中文乱码
  2. hutool的时间工具类
  3. python 配置pip镜像源
  4. Vue 中使用 TypeScript axios 使用方式
  5. 配置GitHub和 Gitee共存环境
  6. mysql-彻底删除方法
  7. 创建一个vue实例
  8. 日常Java 2021/10/20
  9. Spark(十三)【SparkSQL自定义UDF/UDAF函数】
  10. Windows Server 2016域控制器升级到Windows Server 2022遇到的问题记录Fix error 0x800F081E – 0x20003