Ng I., Fang Z., Zhu S., Chen Z. and Wang J. Masked Gradient-Based Causal Structure Learning. arXiv preprint arXiv:1911.10500, 2019.

非线性, 自动地学习因果图.

主要内容

NOTEARS将有向无环图凝练成了易处理的条件, 本文将这种思想扩展至非线性的情况:

\[X_i = f_i(X_{\mathrm{pa}(i)}) + \epsilon_i,
\]

其中\(X_i\)是因果图的结点, \(X_{\mathrm{pa}(i)}\)是其父结点, \(\epsilon\)是无关的噪声.

上述等式等价于

\[X_i = f_i(A_i \circ X) + \epsilon_i,
\]

\(A_i\)是邻接矩阵\(A=[A_1|A_2|\cdots|A_d] \in \{0, 1\}^{d\times d}\)的第i列, \(A_{ij}=1\)表示结点\(X_i\)直接作用于\(X_j\).

所以本文的目标就可以转换为如何估计\(A\)(实际上有了\(A\)也就知道了因果图了). \(A\)应当满足的条件:

  1. \(A\) 能够表示有向无环图;
  2. \(X_i\) 和 \(f(A_i \circ X)\)必须接近, 比如用常见的
\[\|X_i - f(A_i \circ X)\|_2^2
\]

来度量.

直接处理非常麻烦, 首先对上面的问题进行放松, 等价于

\[X_i = f_i(W_i \circ X) + \epsilon_i,
\]

此时\(A = \mathcal{A}(W)\), 即

\[W_{ij} \not = 0 \rightarrow A_{ij} = 1;
W_{ij} = 0 \rightarrow A_{ij} = 0.
\]

本文更进一步, 令

\[W = g_{\tau}(U), \quad U \in \mathbb{R}^{d \times d}.
\]
\[[g_{\tau}(U)]_{ij} = \sigma((u_{ij} + g) / \tau) = \frac{1}{1 + \exp(-(u_{ij}+ (g_1 - g_0)) / \tau)},
\]

其中

\[g = g_1 - g_0, \: g_i \mathop{\sim}\limits^{i.i.d.} \mathrm{Gumbel}(0, 1).
\]

注: Gumbel.

此类操作能保证\(g_{\tau}(U) \in (0, 1)^{d\times d}\), 此时能够把\([g_{\tau}(U)]_{ij}\)看成是\(X_i\), \(X_j\)的关系的紧密型的度量, 在这种情况下

\[[g_{\tau}(U)]_{ij} \le \omega \Rightarrow A_{ij} = 0.
\]

或许会问, 为什么不用sigmoid而用一个这么麻烦的东西, 原因是当\(\tau\)足够小的时候(如本文取的0.2), \([g_{\tau}(U)]_{ij}\)非常接近\(0\)或者\(1\), 而用sigmoid, 作者发现这些值都接近0, 不能很好的模拟有向无环图, 故采用了这个方案.

接下来, 只需要满足

\[\mathbb{E}[\mathrm{tr}(e^{g_{\tau}(U)}) - d] = 0,
\]

即可保证\(g_{\tau}(U)\)能够代表有效无环图. 在实际中, 只需

\[\mathbb{E}[\mathrm{tr}(e^{g_{\tau}(U)}) - d] \le \xi.
\]

注: 期望是关于\(g\)的.

最终的目标

总结下来,

\[\min_{U, \theta} \quad \mathbb{E}_g[\frac{1}{2n} \sum_{k=1}^n \mathcal{L}(x^{(k)}, f(g_{\tau}, x^{(k)}; \theta))] \\
\mathrm{s.t.} \quad \mathbb{E}_g[\mathrm{tr}(e^{g_{\tau}(U)}) - d] \le \xi.
\]

注: \(\mathbb{E}\)是关于\(g\)的, \(n\)的观测数据的总数.

进一步地, 我们希望\(g_{\tau}\)是稀疏的, 故加上正则化项:

\[\min_{U, \theta} \quad \mathbb{E}_g[\frac{1}{2n} \sum_{k=1}^n \mathcal{L}(x^{(k)}, f(g_{\tau}, x^{(k)}; \theta)) + \lambda \|g_{\tau}(U)\|_1] \\
\mathrm{s.t.} \quad \mathbb{E}_g[\mathrm{tr}(e^{g_{\tau}(U)}) - d] \le \xi.
\]

利用augmented Lagrange multiplier, 可得

\[L_p(U, \phi, \alpha) =
\mathbb{E}_g[\frac{1}{2n} \sum_{k=1}^n \mathcal{L}(x^{(k)}, f(g_{\tau}, x^{(k)}; \theta)) + \lambda \|g_{\tau}(U)\|_1 + \alpha h(U)] + \frac{\rho}{2} (\mathbb{E}[h(U)])^2,
\]

其中\(h(U):= \mathrm{tr}(e^{g_{\tau}(U)}) - d\).

采用分布更新:

\[U^{t+1}, \theta^{t+1} = \arg \min_{U, \theta} L_{\rho^t}(U, \phi, \alpha^t); \\
\alpha^{t+1} = \alpha^t + \rho^t \mathbb{E}[h(U^{t+1})]; \\
\rho^{t+1} = \left \{
\begin{array}{ll}
\beta \rho^t, & \mathrm{if} \: \mathbb{E}[h(U^{t+1})] \ge \gamma \mathbb{E}[h(U^t)], \\
\rho^t, & \mathrm{otherwise}.
\end{array} \right .
\]

其中第一步使用Adam执行1000次迭代计算的.

文中还讨论了后处理的一些方法, 和\(A\)是否唯一.

代码

GES and PC

CAM

NOTEARS

DAG-GNN

GraN-DAG

最新文章

  1. MySQL 指定各分区路径
  2. 网络模拟器WANem使用配置图文教程
  3. Servlet3.0的新特性
  4. poj 2446 二分图最大匹配
  5. JS错误:Uncaught SyntaxError: Unexpected token ILLEGAL
  6. WPF 杂谈——开篇简言。
  7. 调参过程中的参数 学习率,权重衰减,冲量(learning_rate , weight_decay , momentum)
  8. Node.js基础学习四之注册功能
  9. Notes on Distributed System -- Distributed Hash Table Based On Chord
  10. 正则 ?<= 和 ?= 用法,范例
  11. HTML学习笔记05-文本格式化
  12. 使用apidoc 生成Restful web Api文档——新手问题与解决方法
  13. zabbix web 配置
  14. 从 shell 眼中看世界
  15. Number Clicker CodeForces - 995E (中途相遇)
  16. swift - VFL
  17. ado.net中事务的使用
  18. VMware 12安装虚拟机Mac OS X 10.10(VMware12安装/共享文件夹)
  19. VMware ESXi NAT实现
  20. java-银行卡基本信息查询

热门文章

  1. cephfs文件系统场景
  2. 源码分析-Consumer
  3. iOS11&IPhoneX适配
  4. Linux学习 - 文件系统属性chattr权限
  5. OSGI 理论知识
  6. SpringBoot(3):SpringData 数据访问
  7. 【Java 设计】如何优雅避免空指针调用
  8. 通过 Ajax 发送 PUT、DELETE 请求的两种实现方式
  9. java 注解的几大作用及使用方法详解
  10. 「Python实用秘技03」导出项目的极简环境依赖