在前一篇文章 第2篇-JVM虚拟机这样来调用Java主类的main()方法  中我们介绍了在call_helper()函数中通过函数指针的方式调用了一个函数,如下:

StubRoutines::call_stub()(
(address)&link,
result_val_address,
result_type,
method(),
entry_point,
args->parameters(),
args->size_of_parameters(),
CHECK
);

其中调用StubRoutines::call_stub()函数会返回一个函数指针,查清楚这个函数指针指向的函数的实现是我们这一篇的重点。 调用的call_stub()函数的实现如下:

来源:/src/share/vm/runtime/stubRoutines.hpp

static CallStub  call_stub() {
return CAST_TO_FN_PTR(CallStub, _call_stub_entry);
}

call_stub()函数返回一个函数指针,指向依赖于操作系统和cpu架构的特定的方法,原因很简单,要执行native代码,得看看是什么cpu架构以便确定寄存器,看看什么os以便确定ABI。

其中CAST_TO_FN_PTR是宏,具体定义如下:

源代码位置:/src/share/vm/runtime/utilities/globalDefinitions.hpp
#define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))

对call_stub()函数进行宏替换和展开后会变为如下的形式:

static CallStub call_stub(){
return (CallStub)( castable_address(_call_stub_entry) );
}

CallStub的定义如下:

源代码位置:/src/share/vm/runtime/stubRoutines.hpp

typedef void (*CallStub)(
// 连接器
address link,
// 函数返回值地址
intptr_t* result,
//函数返回类型
BasicType result_type,
// JVM内部所表示的Java方法对象
Method* method,
// JVM调用Java方法的例程入口。JVM内部的每一段
// 例程都是在JVM启动过程中预先生成好的一段机器指令。
// 要调用Java方法, 必须经过本例程,
// 即需要先执行这段机器指令,然后才能跳转到Java方法
// 字节码所对应的机器指令去执行
address entry_point,
intptr_t* parameters,
int size_of_parameters,
TRAPS
); 

如上定义了一种函数指针类型,指向的函数声明了8个形式参数。 

在call_stub()函数中调用的castable_address()函数定义在globalDefinitions.hpp文件中,具体实现如下:

inline address_word  castable_address(address x)  {
return address_word(x) ;
}

address_word是一定自定义的类型,在globalDefinitions.hpp文件中的定义如下:

typedef   uintptr_t     address_word;

其中uintptr_t也是一种自定义的类型,在Linux内核的操作系统下使用globalDefinitions_gcc.hpp文件中的定义,具体定义如下:

typedef  unsigned int  uintptr_t;

这样call_stub()函数其实等同于如下的实现形式:

static CallStub call_stub(){
return (CallStub)( unsigned int(_call_stub_entry) );
}

将_call_stub_entry强制转换为unsigned int类型,然后以强制转换为CallStub类型。CallStub是一个函数指针,所以_call_stub_entry应该也是一个函数指针,而不应该是一个普通的无符号整数。  

在call_stub()函数中,_call_stub_entry的定义如下:

address StubRoutines::_call_stub_entry = NULL; 

_call_stub_entry的初始化在在/src/cpu/x86/vm/stubGenerator_x86_64.cpp文件下的generate_initial()函数,调用链如下:

StubGenerator::generate_initial()   stubGenerator_x86_64.cpp
StubGenerator::StubGenerator() stubGenerator_x86_64.cpp
StubGenerator_generate() stubGenerator_x86_64.cpp
StubRoutines::initialize1() stubRoutines.cpp
stubRoutines_init1() stubRoutines.cpp
init_globals() init.cpp
Threads::create_vm() thread.cpp
JNI_CreateJavaVM() jni.cpp
InitializeJVM() java.c
JavaMain() java.c

其中的StubGenerator类定义在src/cpu/x86/vm目录下的stubGenerator_x86_64.cpp文件中,这个文件中的generate_initial()方法会初始化call_stub_entry变量,如下:

StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);

现在我们终于找到了函数指针指向的函数的实现逻辑,这个逻辑是通过调用generate_call_stub()函数来实现的。

不过经过查看后我们发现这个函数指针指向的并不是一个C++函数,而是一个机器指令片段,我们可以将其看为C++函数经过C++编译器编译后生成的指令片段即可。在generate_call_stub()函数中有如下调用语句:

__ enter();
__ subptr(rsp, -rsp_after_call_off * wordSize);

这两段代码直接生成机器指令,不过为了查看机器指令,我们借助了HSDB工具将其反编译为可读性更强的汇编指令。如下:

push   %rbp
mov %rsp,%rbp
sub $0x60,%rsp 

这3条汇编是非常典型的开辟新栈帧的指令。之前我们介绍过在通过函数指针进行调用之前的栈状态,如下:

那么经过运行如上3条汇编后这个栈状态就变为了如下的状态: 

我们需要关注的就是old %rbp和old %rsp在没有运行开辟新栈帧(CallStub()栈帧)时的指向,以及开辟新栈帧(CallStub()栈帧)时的new %rbp和new %rsp的指向。另外还要注意saved rbp保存的就是old %rbp,这个值对于栈展开非常重要,因为能通过它不断向上遍历,最终能找到所有的栈帧。

下面接着看generate_call_stub()函数的实现,如下:

address generate_call_stub(address& return_address) {
...
address start = __ pc(); const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); const Address call_wrapper (rbp, call_wrapper_off * wordSize);
const Address result (rbp, result_off * wordSize);
const Address result_type (rbp, result_type_off * wordSize);
const Address method (rbp, method_off * wordSize);
const Address entry_point (rbp, entry_point_off * wordSize);
const Address parameters (rbp, parameters_off * wordSize);
const Address parameter_size(rbp, parameter_size_off * wordSize); const Address thread (rbp, thread_off * wordSize); const Address r15_save(rbp, r15_off * wordSize);
const Address r14_save(rbp, r14_off * wordSize);
const Address r13_save(rbp, r13_off * wordSize);
const Address r12_save(rbp, r12_off * wordSize);
const Address rbx_save(rbp, rbx_off * wordSize); // 开辟新的栈帧
__ enter();
__ subptr(rsp, -rsp_after_call_off * wordSize); // save register parameters
__ movptr(parameters, c_rarg5); // parameters
__ movptr(entry_point, c_rarg4); // entry_point __ movptr(method, c_rarg3); // method
__ movl(result_type, c_rarg2); // result type
__ movptr(result, c_rarg1); // result
__ movptr(call_wrapper, c_rarg0); // call wrapper // save regs belonging to calling function
__ movptr(rbx_save, rbx);
__ movptr(r12_save, r12);
__ movptr(r13_save, r13);
__ movptr(r14_save, r14);
__ movptr(r15_save, r15); const Address mxcsr_save(rbp, mxcsr_off * wordSize);
{
Label skip_ldmx;
__ stmxcsr(mxcsr_save);
__ movl(rax, mxcsr_save);
__ andl(rax, MXCSR_MASK); // Only check control and mask bits
ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
__ cmp32(rax, mxcsr_std);
__ jcc(Assembler::equal, skip_ldmx);
__ ldmxcsr(mxcsr_std);
__ bind(skip_ldmx);
} // ... 省略了接下来的操作
}

其中开辟新栈帧的逻辑我们已经介绍过,下面就是将call_helper()传递的6个在寄存器中的参数存储到CallStub()栈帧中了,除了存储这几个参数外,还需要存储其它寄存器中的值,因为函数接下来要做的操作是为Java方法准备参数并调用Java方法,我们并不知道Java方法会不会破坏这些寄存器中的值,所以要保存下来,等调用完成后进行恢复。

生成的汇编代码如下:

mov      %r9,-0x8(%rbp)
mov %r8,-0x10(%rbp)
mov %rcx,-0x18(%rbp)
mov %edx,-0x20(%rbp)
mov %rsi,-0x28(%rbp)
mov %rdi,-0x30(%rbp)
mov %rbx,-0x38(%rbp)
mov %r12,-0x40(%rbp)
mov %r13,-0x48(%rbp)
mov %r14,-0x50(%rbp)
mov %r15,-0x58(%rbp)
// stmxcsr是将MXCSR寄存器中的值保存到-0x60(%rbp)中
stmxcsr -0x60(%rbp)
mov -0x60(%rbp),%eax
and $0xffc0,%eax // MXCSR_MASK = 0xFFC0
// cmp通过第2个操作数减去第1个操作数的差,根据结果来设置eflags中的标志位。
// 本质上和sub指令相同,但是不会改变操作数的值
cmp 0x1762cb5f(%rip),%eax # 0x00007fdf5c62d2c4
// 当ZF=1时跳转到目标地址
je 0x00007fdf45000772
// 将m32加载到MXCSR寄存器中
ldmxcsr 0x1762cb52(%rip) # 0x00007fdf5c62d2c4

加载完成这些参数后如下图所示。

下一篇我们继续介绍下generate_call_stub()函数中其余的实现。

推荐阅读:

第1篇-关于JVM运行时,开篇说的简单些

第2篇-JVM虚拟机这样来调用Java主类的main()方法

如果有问题可直接评论留言或加作者微信mazhimazh

关注公众号,有HotSpot源码剖析系列文章!

 

最新文章

  1. Photoshop、Illustrator思维导图笔记
  2. RobotFramework自动化测试之脚本编写(一)
  3. Microsoft Visual Studio 2012注册密钥
  4. Nvidia VertexTextureFetch Water
  5. IIS线程池与ASP.NET线程池
  6. 异步加载js
  7. Oracle存储过程学习备忘
  8. Sharepoint中出现webpart部署之后却找不到的一种情况
  9. 电话qie听器
  10. iOS调节系统音量
  11. Base64 加密之中文乱码
  12. LESS使用介绍
  13. ArcGIS API for Silverlight 使用GP服务实现要素裁剪功能
  14. JavaScript中DOM的层次节点(一)
  15. Lucene 的索引文件锁原理
  16. Git安装教程(windows)
  17. Git 简单入门(二)
  18. JS获取页面复选框选中的值
  19. py-day3-2 python 函数递归
  20. 选择排序(直接排序)java语言实现

热门文章

  1. VSCode 使用 Code Runner 插件无法编译运行文件名带空格的文件
  2. PS 快速抠图
  3. 在线CRM系统对企业的好处有哪些
  4. acwing 868. 筛质数
  5. 【IllegalArgumentException】: object is not an instance of declaring class
  6. Redis:Redis的安装
  7. spring 5 webflux异常处理
  8. 掌握了这几个Linux命令可以让你工作效率提高一倍
  9. 如何用jmeter监控内存,CPU(1)
  10. P5816 [CQOI2010]内部白点 题解