ThreadLocal 是本地线程变量,是一个以ThreadLocal对象为key,任意对象为value的存储结构。

一、使用案例

1.定义线程类MyThread,代码如下:

 public class MyThread extends Thread{

     private User user;

     public MyThread(User user){
this.user = user;
} public void run() {
System.out.println("线程:"+Thread.currentThread().getName()+"设置ThreadLocal的user="+user.getUserName());
ThreadLocalTest.LOCAL.set(user);
try {
Thread.sleep(2000L);
} catch (InterruptedException e) {
e.printStackTrace();
}
User user = ThreadLocalTest.LOCAL.get();
System.out.println("线程:"+Thread.currentThread().getName()+"从ThreadLocal获取的user="+user.getUserName());
}
}

2.测试方法Main方法

 public class ThreadLocalTest {

     //全局ThraedLocal变量
public static ThreadLocal<User> LOCAL = new ThreadLocal<User>(); public static void main(String[] args){
User user1 = new User();
user1.setUserName("Jack");
User user2 = new User();
user2.setUserName("Bob"); //定义两个线程变量
Thread t1 = new MyThread(user1);
Thread t2 = new MyThread(user2);
t1.start();
t2.start(); //从ThreadLocal变量中获取数据
User user = LOCAL.get();
System.out.println(user==null);//当前线程为Main线程,而Main线程没有设置过TheadLocal的值,所以获取不到
LOCAL.set(user2);
System.out.println(LOCAL.get().getUserName());//从Main线程设置ThreadLocal,则可以获取
}
}

定义两个线程,线程的run方法执行了ThreadLocal变量的set操作,然后再执行get操作,可以获取到本线程设置的值

而直接从Main线程中执行ThreadLocal的get方法,返回的数据为null,只有在自己的线程中执行了set操作,才可以获取到值,

上例的执行结果如下:

 true
Bob
线程:Thread-0设置ThreadLocal的user=Jack
线程:Thread-1设置ThreadLocal的user=Bob
线程:Thread-0从ThreadLocal获取的user=Jack
线程:Thread-1从ThreadLocal获取的user=Bob

二、源码解析

ThreadLocal主要有三个方法,

set (T value)  给ThreadLocal变量设置数据,ThreadLocal会存储当前线程存储的值

get ( )   返回ThreadLocal当前线程设置的值

remove() 删除当前线程设置的ThreadLocal的值

2.1、set方法解析

源码如下:

 public void set(T value) {
// 获取当前线程
Thread t = Thread.currentThread();
// 获取当前线程的ThreadLocalMap
ThreadLocalMap map = getMap(t);
if (map != null)
// 如果当前线程的ThreadLocalMap存在,则直接将当前的value设置到map中,map的key就是当前的ThreadLocal对象
map.set(this, value);
else
// 如果当前线程的ThreadLocalMap不存在,则先创建ThreadLocalMap,则进行赋值
createMap(t, value);
}

首先是通过getMap (Thread t) 方法获取当前线程的ThreadLocalMap对象,代码如下:

  ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}

每个线程Thread对象内部都有一个ThreadLocalMap对象threadLocals

 ThreadLocal.ThreadLocalMap threadLocals = null; //Thread类中持有一个ThreadLocalMap对象

如果当前线程的ThreadLocalMap不存在,则只需createMap方法初始化,代码如下:

 void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}

直接初始化一个ThreadLocalMap,然后赋值给Thread的threadLocals对象

可以发现ThreadLocal的set方法逻辑其实很简单,就是获取一个ThreadLocalMap对象,然后将需要set的值保存在ThreadLocalMap中

ThreadLocalMap是ThreadLocal的一个内部类,如下:

static class ThreadLocalMap {
static class Entry extends WeakReference<ThreadLocal<?>> { Object value; Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
} }

ThreadLocal的set方法实际是执行了ThreadLocalMap的set方法

 private void set(ThreadLocal<?> key, Object value) {

             // We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not. Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1); for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal<?> k = e.get(); if (k == key) {
e.value = value;
return;
} if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
} tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}

可以发现是ThreadLocalMap是将当前的ThreadLocal当做一个key,需要存储的对象为value,存储在ThreadLocalMap内部的Entry数组中。

ThreadLocalMap也会存储hash冲突的问题,只是解决冲突的方式比较简单,指定尝试获取下一个位置用于存放,直到能够放入位置(ThreadLocal不建议一个线程有太多ThreadLocal,所以没必要花费大力气解决冲突问题)

同理既然ThreadLocal的set方法是执行了ThreadLocalMap的set方法,那么可以猜想ThreadLocal的get方法也是执行了ThreadLocalMap的get方法。

如下:

 public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
return setInitialValue();
}

ThreadLocalMap的getEntry方法如下:

  private Entry getEntry(ThreadLocal<?> key) {
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
return e;
else
return getEntryAfterMiss(key, i, e);
}

为什么ThreadLocalMap是采用数组存储的呢?因为ThreadLocalMap是和Thread绑定的,一个Thread只有一个ThreadLocalMap对象,但是每个Thread可以存储多个ThreadLocal对象

所以ThreadLocalMap中的数组就是存储了多个ThreadLocal对象,数组的下标是通过 threadLocal对象的hashCode和数组长度进行取模算法得到的数组下标值。

分析到这里可以总结出ThreadLocal的原理:

每个线程Thread 内部有一个 ThreadLocalMap对象,每个ThreadLocalMap 存储了多个以 ThreadLocal对象为key,存储的数据为value的值。ThreadLocalMap内部采用数组存储ThreadLocal的值

通过ThreadLocal的hashCode和数组长度进行取模算法得到数组的下标位置,在指定的位置存储ThreadLocal的值。

分析到这里涉及到的对象 包含了 Thread、ThreadLocal 和 ThreadLocalMap,这三者的关系为:

Thread 内部有一个 ThreadLocalMap对象实例

ThreadLocalMap  是 ThreadLocal的一个内部类

ThreadLocalMap 存储的是以 ThreadLocal 为key,ThreadLocal的值为value 的结构

光靠文字不好理解,使用图形的话很更直观,以上面的代码为例,三者关系如下图示:

每个Thread中的ThreadLocalMap可以存储多个ThreadLocal的值,但是同一个ThreadLocal变量在同一个Thread中只能保存一个值,后面set的值会把前面set的值覆盖。

如果需要保存多个值就需要使用多个ThreadLocal来存储

三、ThreadLocal内存泄露浅析

ThreadLocal很好的解决了线程之间数据隔离,但是大量的ThreadLocal在大量的线程中就有了空间的问题,内存中存储的ThreadLocal值的个数等于 ThreadLocal变量个数 * 线程个数,显然随着线程的变多,ThreadLocal占据的空间也是不容小觑的。

所以使用ThreadLocal的时候就需要做到不用对时候及时回收,防止没有被回收导致内存泄露问题。如下图示:

栈中有一个ThreadLocal的变量和一个Thread的变量 分别强引用堆中对应的实例,堆中的ThreadLocalMap实例也是被Thread变量引用

ThreadLocalMap又持有 Entry实例的强引用,而Entry分别持有key的弱引用,value的强引用,key是 ThreadLocal实例,value是实际存的数据

上图中实现表示强引用,虚线表示弱引用。

当ThreadLocal 不用的时候,ThreadLocal变量会被回收,此时ThreadLocal 变量和ThreadLocal实例的强引用断开,但是此时ThreadLocal实例还不能够被回收,引用还有 Entry的key对ThreadLocal实例持有着弱引用

所以当下一次执行GC的时候,ThreadLocal实例就会被回收,因为GC的时候会直接回收弱引用实例。此时Entry的key已经被回收了,所以Entry就变成了<null, value >的结构,这就会导致这个value是无法被获取了。

如果这个Thread 一直活跃,那么Thread 强引用 ThreadLocalMap;ThreadLocalMap强引用Entry,Entry强引用value就都不能被回收,所以一旦ThreadLocal被回收,而Thread还继续工作的话,就会导致value无法被访问,

从而就造成了 内存泄露问题。

既然Entry的 key是弱引用,那么为什么value不是弱引用呢?

如果value是弱引用的话,那么在GC的时候就会被回收,而ThreadLocal除了有弱引用,还有一个强引用,所以在GC的时候ThreadLocal并不会被强制回收,而value会被回收,就会出现通过 key无法获取到数据的情况,

如果GC频繁,那么ThreadLocal的get方法就会频繁获取不到数据,那么这样的ThreadLocal还有什么意义呢?

所以ThreadLocalMap的实现仅仅将key作为了弱引用,value不会出现弱引用,这样虽然有内存泄露问题,但是至少可以保证只要 ThreadLocal 还在存活状态,就可以获取到value,显然是高可用的。

那么既然有内存泄露问题,ThreadLocal就不管了么?显然不可能!

ThreadLocal的get方法、set方法、remove方法的内部都做了判断,如果存储key=null都情况,就将value设置为null,一旦value设置为null之后,那么就将value和实际的数据之前的强引用断开了,那么数据在GC的时候就会被回收

但是这样的设计就导致ThreadLocal 如果再也不会执行get、set 或 remove方法了,那么还是会存在内存泄露问题,所以在使用的时候需要养成好习惯,当不用ThreadLocal的时候,手动执行remove方法回收数据。

最新文章

  1. UILabel多种字体
  2. “K米” 软件产品评测
  3. epoll和poll效率差异
  4. NFinal 控制器—URL
  5. [C++程序设计]指针数组和指向指针的指针
  6. poj2226(最小点覆盖)
  7. VBS基础篇 - 对象(5) - File对象
  8. Windows搭建以太坊的私有链环境
  9. javascript . 04 匿名函数、递归、回调函数、对象、基于对象的javascript、状态和行为、New、This、构造函数/自定义对象、属性绑定、进制转换
  10. HDU 2119 Matrix
  11. Linux系统时间, 硬件BIOS时间的校准与同步
  12. Linux内核基本装载卸载
  13. mysql 计算两个日期之间的工作日天数
  14. linux 下camera调试笔记【转】
  15. 关于uframe源码的一些解读
  16. SVN更新无数次后仍显示Out of date
  17. fast ai环境配置
  18. linux_添加一个普通用户
  19. Guava HashMultiMap(MultiMap)反转映射
  20. ansible 删除路径下的多个文件[收集的参考]

热门文章

  1. Linux网络服务第二章DHCP原理与配置
  2. Android xUtils3.0使用手册(一)- 基础功能使用
  3. HDU 2513 Cake slicing
  4. 【JAVA基础】05 Java语言基础:数组
  5. 【Linux常见命令】lsof命令
  6. 如何将Superset嵌入后台系统之实践
  7. 关于fastjson在序列化成JSON串时字段增加的问题
  8. Markdown中希腊字母与代码对应表
  9. USACO Training Section 1.1 贪婪的送礼者Greedy Gift Givers
  10. js怎么删除数组元素,有哪些删除元素方法