source address:http://en.wikipedia.org/wiki/Radix_tree

In computer science, a radix tree (also patricia trie or radix trie or compact prefix tree) is a space-optimized trie data structure where each node with only one child is merged with its child. The result is that every internal node has up to the number of children of the radix r of the radix trie, where r is a positive integer and a power x of 2, having x ≥ 1. Unlike in regular tries, edges can be labeled with sequences of elements as well as single elements. This makes them much more efficient for small sets (especially if the strings are long) and for sets of strings that share long prefixes.

Unlike regular trees (where whole keys are compared en masse from their beginning up to the point of inequality), the key at each node is compared chunk-of-bits by chunk-of-bits, where the quantity of bits in that chunk at that node is the radix r of the radix trie. When the r is 2, the radix trie is binary (i.e., compare that node's 1-bit portion of the key), which minimizes sparseness at the expense of maximizing trie depth—i.e., maximizing up to conflation of nondiverging bit-strings in the key. When r is an integer power of 2 greater or equal to 4, then the radix trie is an r-ary trie, which lessens the depth of the radix trie at the expense of potential sparseness.

As an optimization, edge labels can be stored in constant size by using two pointers to a string (for the first and last elements).[1]

Note that although the examples in this article show strings as sequences of characters, the type of the string elements can be chosen arbitrarily; for example, as a bit or byte of the string representation when using multibyte character encodings or Unicode.

Applications

As mentioned, radix trees are useful for constructing associative arrays with keys that can be expressed as strings. They find particular application in the area of IP routing, where the ability to contain large ranges of values with a few exceptions is particularly suited to the hierarchical organization of IP addresses.[2] They are also used for inverted indexes of text documents in information retrieval.

Operations

Radix trees support insertion, deletion, and searching operations. Insertion adds a new string to the trie while trying to minimize the amount of data stored. Deletion removes a string from the trie. Searching operations include (but are not necessarily limited to) exact lookup, find predecessor, find successor, and find all strings with a prefix. All of these operations are O(k) where k is the maximum length of all strings in the set, where length is measured in the quantity of bits equal to the radix of the radix trie.

Lookup

Finding a string in a Patricia trie

The lookup operation determines if a string exists in a trie. Most operations modify this approach in some way to handle their specific tasks. For instance, the node where a string terminates may be of importance. This operation is similar to tries except that some edges consume multiple elements.

The following pseudo code assumes that these classes exist.

Edge

  • Node targetNode
  • string label

Node

  • Array of Edges edges
  • function isLeaf()
function lookup(string x)
{
// Begin at the root with no elements found
Node traverseNode := root;
int elementsFound := 0; // Traverse until a leaf is found or it is not possible to continue
while (traverseNode != null && !traverseNode.isLeaf() && elementsFound < x.length)
{
// Get the next edge to explore based on the elements not yet found in x
Edge nextEdge := select edge from traverseNode.edges where edge.label is a prefix of x.suffix(elementsFound)
// x.suffix(elementsFound) returns the last (x.length - elementsFound) elements of x // Was an edge found?
if (nextEdge != null)
{
// Set the next node to explore
traverseNode := nextEdge.targetNode; // Increment elements found based on the label stored at the edge
elementsFound += nextEdge.label.length;
}
else
{
// Terminate loop
traverseNode := null;
}
} // A match is found if we arrive at a leaf node and have used up exactly x.length elements
return (traverseNode != null && traverseNode.isLeaf() && elementsFound == x.length);
}

Insertion

To insert a string, we search the tree until we can make no further progress. At this point we either add a new outgoing edge labeled with all remaining elements in the input string, or if there is already an outgoing edge sharing a prefix with the remaining input string, we split it into two edges (the first labeled with the common prefix) and proceed. This splitting step ensures that no node has more children than there are possible string elements.

Several cases of insertion are shown below, though more may exist. Note that r simply represents the root. It is assumed that edges can be labelled with empty strings to terminate strings where necessary and that the root has no incoming edge.

  • Insert 'water' at the root

  • Insert 'slower' while keeping 'slow'

  • Insert 'test' which is a prefix of 'tester'

  • Insert 'team' while splitting 'test' and creating a new edge label 'st'

  • Insert 'toast' while splitting 'te' and moving previous strings a level lower

Deletion

To delete a string x from a tree, we first locate the leaf representing x. Then, assuming x exists, we remove the corresponding leaf node. If the parent of our leaf node has only one other child, then that child's incoming label is appended to the parent's incoming label and the child is removed.

Additional operations

  • Find all strings with common prefix: Returns an array of strings which begin with the same prefix.
  • Find predecessor: Locates the largest string less than a given string, by lexicographic order.
  • Find successor: Locates the smallest string greater than a given string, by lexicographic order.

History

Donald R. Morrison first described what he called "Patricia trees" in 1968;[3] the name comes from the acronym PATRICIA, which stands for "Practical Algorithm To Retrieve Information Coded In Alphanumeric". Gernot Gwehenberger independently invented and described the data structure at about the same time.[4] PATRICIA tries are radix tries with radix equals 2, which means that each bit of the key is compared individually and each node is a two-way (i.e., left versus right) branch.

Comparison to other data structures

(In the following comparisons, it is assumed that the keys are of length k and the data structure contains n members.)

Unlike balanced trees, radix trees permit lookup, insertion, and deletion in O(k) time rather than O(log n). This doesn't seem like an advantage, since normallyk ≥ log n, but in a balanced tree every comparison is a string comparison requiring O(k) worst-case time, many of which are slow in practice due to long common prefixes (in the case where comparisons begin at the start of the string). In a trie, all comparisons require constant time, but it takes m comparisons to look up a string of length m. Radix trees can perform these operations with fewer comparisons, and require many fewer nodes.

Radix trees also share the disadvantages of tries, however: as they can only be applied to strings of elements or elements with an efficiently reversible mapping to strings, they lack the full generality of balanced search trees, which apply to any data type with a total ordering. A reversible mapping to strings can be used to produce the required total ordering for balanced search trees, but not the other way around. This can also be problematic if a data type onlyprovides a comparison operation, but not a (de)serialization operation.

Hash tables are commonly said to have expected O(1) insertion and deletion times, but this is only true when considering computation of the hash of the key to be a constant time operation. When hashing the key is taken into account, hash tables have expected O(k) insertion and deletion times, but may take longer in the worst-case depending on how collisions are handled. Radix trees have worst-case O(k) insertion and deletion. The successor/predecessor operations of radix trees are also not implemented by hash tables.

Variants

A common extension of radix trees uses two colors of nodes, 'black' and 'white'. To check if a given string is stored in the tree, the search starts from the top and follows the edges of the input string until no further progress can be made. If the search-string is consumed and the final node is a black node, the search has failed; if it is white, the search has succeeded. This enables us to add a large range of strings with a common prefix to the tree, using white nodes, then remove a small set of "exceptions" in a space-efficient manner by inserting them using black nodes.

The HAT-trie is a radix tree based cache-conscious data structure that offers efficient string storage and retrieval, and ordered iterations. Performance, with respect to both time and space, is comparable to the cache-conscious hashtable.[5][6] See HAT trie implementation notes at [1]

最新文章

  1. 浅谈 PHP 与手机 APP 开发(API 接口开发) -- 转载
  2. Tomcat并发数优化,修改service.xml性能调优 增加最大并发连接数
  3. 一台独立的服务器是可以可以建立多个网站的,一个ip地址,一个端口
  4. Orcle常用语句
  5. @import和link的区别
  6. 黑客入门之IP地址及常用命令
  7. Sikuli增强包
  8. oc-05-对象的创建
  9. css placeholder 颜色设置
  10. 字符编码笔记:ASCII、Unicode、UTF-8、UTF-16、UCS、BOM、Endian
  11. IIC接口下的24C02 驱动分析
  12. Java设计模式之单例模式详解
  13. 我知道你不知道的负Margin
  14. thinkphp5踩坑之部署到服务器模板不存在
  15. PIL: 建立一个GIF图
  16. 微信开发 提示 Redirect_uri(错误10003)
  17. 使用WPF动态显示CPU使用率
  18. Jmeter之模拟文件上传、下载接口操作
  19. MySQL数据库插入中文乱码解决方法
  20. Sharing Code Between Silverlight and Win8 app metro

热门文章

  1. Android手机中怎么样在没root的情况下 修改 hosts 文件
  2. [Swift]八大排序算法(七):归并排序
  3. window.open()弹出窗口被拦截
  4. Unity---高度解耦和
  5. loj #2538. 「PKUWC2018」Slay the Spire
  6. SDUT OJ 数据结构实验之链表一:顺序建立链表
  7. 精通 WPF UI Virtualization (提升 OEA 框架中 TreeGrid 控件的性能)
  8. adminlte+layui框架搭建3 - layui弹出层
  9. [HAOI2015]按位或(FWT)
  10. 洛谷 P2680 运输计划(NOIP2015提高组)(BZOJ4326)