由题目条件显然可以得到状态 f[i][j] 表示以 i 为结尾且 i 后作为断点,共做了 j 次分组的最小代价。

  因此转移变得很显然:f[i][j]=min{f[k][j-1]+(s×j+sumT[i])×(sumC[i]-sumC[k])}  (0≤k<i)

            sumT[i]表示时间的前缀和,sumC[i]表示代价的前缀和

  但是绝望的是显然时间复杂度是O(n³),2D/1D的动态规划显然无法解决一题(但是如果能使用斜率优化也可以优化为O(n²)的程度,但显然毫无卵用QAQ)

  所以我们来优化状态,无法避免对 i 的枚举,所以优化 j 成了必然,由于在转移中出现了s×j这恐怖的一项,导致不得不去枚举 j 的数值,但是我们将s×j提出,不难发现对于每组机器的开机时间 s 对最终答案造成的影响是 s×(sumC[n]-sum[k]),所以我们对当前的状态提前加上这个值,就可以很巧妙的避免了对 j 的枚举。

  所以新的状态油然而生 f[i] 表示前 i 个任务当前断点在 i 后的最小代价。

  转移也很是自然:f[i]=min{f[j]+(s+sumT[i])×(sumC[i]-sumC[j])}+s×(sumC[n]-sumC[i])

  此时这个1D/1D的动态规划在此时已经在状态的维度上达到了最优,所以一堆大佬已经开始了斜率优化切题过程,但是作为蒟蒻的我们还是先来研究一下斜率优化的本质QWQ。

  ……

  不妨先来降低一波难度吧假设对于所有时间 T 都是正的,我们该如何解决这道题呢?

  显然这无数转移之中我们早可以隐约发现其中有无数不必要的枚举,所以我们可以假设 j1<j2<i 时,对于当前的 i 来说 j2 比 j1 更优,不难得到一下的式子:

  f[j1]+(s+sumT[i])×(sumC[i]-sumC[j1])≥f[j2]+(s+sumT[i])×(sumC[i]-sumC[j2])

  由于有关 i 的变量在此时对于当前状态来说相当于常量,所以我们应该将与 i 有关的式子移到一边,可得:

  f[j2]-f[j1]-s×(sumC[j2]-sumC[j1])≤sumT[i]×(sumC[j2]-sumC[j1])

  同除以(sumC[j2]-sumC[j1])得:

  f[j2]-f[j1]-s×(sumC[j2]-sumC[j1])/(sumC[j2]-sumC[j1])≤sumT[i]

  所以当满足以上的关系式的时候,对于状态 i 来说 j1 已经无用,j2 仍是有用的。

  所以我们不妨设G(j1,j2)=f[j2]-f[j1]-s×(sumC[j2]-sumC[j1])/(sumC[j2]-sumC[j1]),

  若出现 j1,j2,j3 时,当G(j1,j2)≥G(j2,j3)这种情况发生时,无论sumT[i]取何值,j2都不可能为最优。(这一步的讨论十分关键)

  由此我们需要维护一个严格单调递增的队列即可对于当前的状态 i O(1)求出它的最有转移,这就是我们俗称的斜率优化。

  

  如果在坐标系中分析,则更为清晰对于虚线而言,实线连接的三个点中中间的点永远不可能成为最用,随即这便是斜率优化名称的由来,因为它像极了斜率的式子,我们只需要维护一个凹壳就可以了!!!QWQ

  ……

  分析完水题我们再来看一看原题吧,如果 T 又负数,相当于 sumT[i] 不是单调的,我们仍需要维护凹壳,因为它满足我们上方证明的最优性,所以我们在查找上需要花点心思,仔细一想这也非常简单,只需要二分出适合于当前斜率 sumT[i] 的区间,也就是寻找 G(j2,j3)>=sumT[i] 且 G(j1,j2)<=sumT[i],则此时 j2 为当前的最有转移QAQ,代码实现也没有什么难度嘻嘻!!!

  所以善良的我会告诉你们代码如下:

#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=;
ll T[N],F[N],f[N];
int n,s,S,st,ed,q[N]; ll Y(int j){ return f[j]-F[n]*T[j]+F[j]*T[j]-F[j]*S; } void dp(){
st=ed=;
rep(i,,n){
int l=,r=ed-,ans=ed;
while (l<=r){
ll mid=(l+r)>>;
if (1ll*(F[q[mid+]]-F[q[mid]])*T[i]<=Y(q[mid+])-Y(q[mid])) ans=mid,r=mid-; else l=mid+;
}
int j=q[ans]; f[i]=f[j]+(F[n]-F[j])*(T[i]-T[j]+S);
while (st<ed && 1ll*(Y(q[ed])-Y(q[ed-]))*(F[i]-F[q[ed]])>=(Y(i)-Y(q[ed]))*(F[q[ed]]-F[q[ed-]])) ed--;
q[++ed]=i;
}
} int main(){
scanf("%d%d",&n,&S);
rep(i,,n) scanf("%lld%lld",&T[i],&F[i]),T[i]+=T[i-],F[i]+=F[i-];
dp(); printf("%lld\n",f[n]);
return ;
}

emmmm,代码我是网上拷贝的主要是时间太晚了,大家见谅QAQ,第一遍博客希望很多人关注,加油加油!!!

最新文章

  1. SqlServer 触发器
  2. git 实用操作
  3. java多线程(精华版)
  4. 不可小觑的SQL语句
  5. HDU2191(多重背包)
  6. Java制作证书的工具keytool用法总结
  7. 关于js中两种定时器的设置及清除
  8. ECSHOP验证码背景图修改教程
  9. C#winform控制textbox输入只能为数字
  10. xtjh
  11. GoLang获取struct的tag
  12. 初学laravel框架,解决访问路由404的问题
  13. Java线程池主线程等待子线程执行完成
  14. 浅谈js中的浅拷贝和深拷贝
  15. 树莓派上运行.net core 2.0程序
  16. iOS 后台调用apns推送
  17. 调皮的udp组播技术
  18. jQuery 学习(2)——jQuery选择器
  19. css垂直居中方法
  20. Git将本地项目上传到GitHub

热门文章

  1. D Tree HDU - 4812
  2. nth Permutation LightOJ - 1060
  3. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列
  4. 洛谷P3254 圆桌问题(最大流)
  5. Dreamoon and MRT(二元枚举)
  6. v8引擎详解
  7. caffe layer注册机制
  8. 跑RFCN
  9. 环球影城母公司:务必阻止复仇者和 X 战警团聚
  10. B&#233;zier surface(贝塞尔曲面)