BZOJ_5416_[Noi2018]冒泡排序_DP+组合数+树状数组

Description

www.lydsy.com/JudgeOnline/upload/noi2018day1.pdf


好题。

合法的排列的交换次数刚好是交换次数的下界,也就是说不能有多余的交换。

也就是对于ai这个数,只能从i到ai这一个方向走。

考虑x,y,z三个数(x>y>z),y需要和x、z各交换一次,这显然不能使y这个数满足只向一个方向移动这个条件。

于是转化为排列的连续下降子序列最多为2。

考虑DP,设f[i][j]表示最后i个数没填,这i个数中有j个数是大于前缀(1~n-i)最大值的方案数。

考虑倒数第i个数可以填什么,f[i][j]<---f[i-1][k],有k<=j。

当k==j时说明填入了一个小于前缀最大值的数,这样的数只可以填最小的一个,有一种方案。

当k<j时0~j-1中的每个k都对应一个比前缀最大值大的数,每个都有一种方案。

有DP式子f[i][j]+=f[i-1][k](0<=k<=j),即f[i][j]=f[i-1][j]+f[i][j-1]。

然后考虑对已知的这个排列怎么做。

假设前缀最大值为mx,现在处理到的这一位排列上的值是p。

如果p>mx,这一位可以从p+1开始取值。

否则,p+1到mx的这些数不能选,如果选了会和前面的mx和后面的p形成3元组。

故这一位考虑max(mx,p)+1开始的数,比较好的一件事就是这些数一定都没出现,那么对答案的贡献就是$\sum\limits_{j=0}^{n-max(mx,p)-1}f[n-i][j]$。

这玩意又等于f[n-i+1][n-max(mx,p)-1]。

还要注意每步如果p<mx,求一下后面还有没有小于p的没填的数,如果有就直接停止,这步用个树状数组搞定。

我们现在的时间复杂度到了$O(n^2)$,发现复杂度瓶颈在求f那里。

考虑dp方程f[i][j]=f[i-1][j]+f[i][j-1],相当于把所有(x,y)(x<y)的格子抠掉,从(0,0)走到(i,j)的方案数。

这玩意就是用推卡特兰数的方式翻折计数可得f[i][j]=C(i+j,i)-C(i+j,i+1)。

然后就做完啦。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 600050
#define mod 998244353
#define _max(x,y) ((x)>(y)?(x):(y))
typedef long long ll;
inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
int rd() {
int x=0; char s=nc();
while(s<'0'||s>'9') s=nc();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
int fac[N<<1],inv[N<<1],n,p[N],c[N];
int qp(int x,int y) {int re=1;for(;y;y>>=1,x=ll(x)*x%mod) if(y&1) re=ll(re)*x%mod;return re;}
void fix(int x,int v) {for(;x<=n;x+=x&(-x)) c[x]+=v;}
int inq(int x) {int re=0;for(;x;x-=x&(-x)) re+=c[x]; return re;}
void init() {
int i;
for(fac[0]=1,i=1;i<=1200000;i++) fac[i]=ll(fac[i-1])*i%mod;
inv[1200000]=qp(fac[1200000],mod-2);
for(i=1199999;i>=0;i--) inv[i]=ll(inv[i+1])*(i+1)%mod;
}
int C(int n,int m) {
if(n<m) return 0;
return ll(fac[n])*inv[m]%mod*inv[n-m]%mod;
}
int F(int i,int j) {
return (C(i+j,i)-C(i+j,i+1)+mod)%mod;
}
void solve() {
memset(c,0,sizeof(c));
n=rd();
int i;
int ans=0,mx=0;
for(i=1;i<=n;i++) p[i]=rd(),fix(i,1);
for(i=1;i<n;i++) {
int flg=inq(p[i]-1),lim=_max(mx,p[i])+1,cnt=n-lim+1;
ans=(ans+F(n-i+1,cnt-1))%mod;
if(p[i]<mx&&flg) break;
mx=_max(mx,p[i]);
fix(p[i],-1);
}
printf("%d\n",ans);
}
int main() {
init();
int T;
T=rd();
while(T--) solve();
}

最新文章

  1. 开源任务管理平台TaskManagerV2.0介绍及升级说明
  2. websocket for python
  3. 017. ADO.NET Connection和command及DataReader
  4. java中 正则表达式的使用
  5. JS设置打印页面并调用本地打印机打印页面
  6. [转] git修改author
  7. ADO知识的运用二(Day 28)
  8. 使用.NET REACTOR制作软件许可证
  9. django的FBV和CBV
  10. Mego开发文档 - 从EF6/EFCore迁移到Mego
  11. qq侧滑
  12. 完美解决win10家庭版本系统无法远程连接问题
  13. MySQL之数据表的插入内容 空与非空(六)
  14. sed删除行
  15. OpenLdap+MySQL笔记
  16. JavaScript的数据类型---最全,最详细的数据类型,高级的工程师从数据类型开始
  17. python中repr和eval可以用来在数据结构和字符串间互转
  18. CareerCup之1.3字符串去重
  19. 通过adb shell操作android真机的SQLite数据库
  20. 使用jquery插件validate制作的表单验证案例

热门文章

  1. 终极报错解决方案:Error:Execution failed for task &#39;:app:processDebugManifest&#39;. &gt; Manifest merger failed with
  2. Controller 层实现
  3. npm 更新镜像安装Appium
  4. 查找——图文翔解SkipList(跳跃表)
  5. Java多线程之~~~ReadWriteLock 读写分离的多线程实现
  6. FTPClient listFiles 阻塞问题
  7. liunx安装pip
  8. YUV格式
  9. 物联网网络编程和web编程
  10. 从士兵到程序员再到SOHO程序员 (二)