今天讲图论,顺便搞一搞之前没弄完的前向星dij

1.图的基本概念(课件原话):

  G (图)= (V(点); E(边))
  一般来说,图的存储难度主要在记录边的信息
  无向图的存储中,只需要将一条无向边拆成两条即可
  邻接矩阵:用一个二维数组 edg[N][N] 表示
  edg[i][j] 就对应由 i 到 j 的边信息
  edg[i][j] 可以记录 Bool,也可以记录边权
  缺点:如果有重边有时候不好处理
  空间复杂度 O(V2)
  点度(出边入边条数)等额外信息也是很好维护的
  模板(传说中的链式前向星/链式存图):

#include<bits/stdc++.h>
using namespace std;
const int N=;
int n,m,s;
struct Ed{
int next,dis,to;
}ed[N];
int ed_num;
int tail[N];
inline void add(int from,int to,int dis){
ed_num++;
ed[ed_num].dis=dis;
ed[ed_num].to=to;
ed[ed_num].next=tail[from];
tail[from]=ed_num;
}
int main(){
scanf("%d%d%d",&n,&m,&s);
for(int i=;i<=m;i++){
int a,b,c;
add(a,b,c);
}
//use it
for(int i=tail[s];i;i=ed[i].next){
//bla bla bla...
}
printf("What ever it takes\n");
return ;
}

2.vector

  用于灵活储存一定范围内(指不会爆栈)数据的变长数组

  队列好像就是这么存的,然而这个东西很慢...

最小生成树:

3.kruskal(前置知识:并查集):

  将每条边排序,按从小到大加入生成树,并将两端点合并作同一并查集,

  如果边的两端点再加入此边之前已属于同一集合,说明其已经连通,无需加入这一条边

  如果当前边数已经为n-1,则跳出循环,已经找到目标

#include<bits/stdc++.h>
using namespace std;
int n,m;
int fa[];
inline int father(int t){
if(fa[t]!=t) fa[t]=father(fa[t]);
return fa[t];
}
inline void u(int l,int r){
int fl=father(l);
int fr=father(r);
if(fl!=fr) fa[fl]=fr;
}
struct ed{
int len;
int begin,end;
}dis[];
inline bool cmp(ed a,ed b){
return a.len<b.len;
}
int sum;
int num;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
fa[i]=i;
for(int i=;i<=m;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
dis[i].begin=x;
dis[i].end=y;
dis[i].len=z;
}sort(dis+,dis++m,cmp);
for(int i=;i<=m;i++){
if(father(dis[i].begin)!=father(dis[i].end)){
u(dis[i].begin,dis[i].end);
sum+=dis[i].len;
num++;
}
if(num==n-){
cout<<sum<<endl;
return ;
}
}
cout<<"orz";
return ;
}

4.kosaraju(偷一波baidu)

  对原图G进行深度优先遍历,记录每个节点的离开时间num[i]

  选择具有最晚离开时间的顶点,对反图GT(由G的反向边组成)进行遍历,删除能够遍历到的顶点

  这些顶点构成一个强连通分量(好像是互相连通的意思)

  如果还有顶点没有删除,继续步骤2,否则算法结束

5.prim

  思想:一开始有n个连通块,从起点开始,每次找距离最短的连通块连到一起

  代码:咕咕咕

总的来说,最小生成树还是用kruskal吧...

最短路问题(共四个,真正意义上是3个):

给一个有向图,求s到e的最短距离(距离:两点之间边的边权和)

6.松弛操作——最短路算法的本质

  dis[i][j]<=dis[i][k]+dis[k][j]

7.floyd(之前打的一直是错的):

  三层循环找上面式子的i(起点),j(终点),k(中间点)

  代码(邻接矩阵):

#include <bits/stdc++.h>
using namespace std;
const int N=;
const int inf=<<;
int d[N][N],n,m;
int main(){
cin>>n>>m;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++) d[i][j]=inf;
for(int u,v,w,i=;i<=m;i++)
cin>>u>>v>>w,d[u][v]=min(d[u][v],w);
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
printf("并没有输出\n");
return ;
}

  要点:

  1.先要枚举k,不然就是错的

  2.把最大边初始化为inf(infinite),即为极大(无穷),不然你min怎么取...(全是0)

  3.主要思路是在k=t循环结束时,dis[i][j]只经过1,2...t,此时dis[i][j]为真实值

  4.负权环(一个可以跑死SPFA的东西):

  Floyd跑完以后判断下有没有负边权就好,Floyd能处理,但SPFA会凉,

  具体解决办法就是加一个计数变量,如果处理次数大于预期最大次数,就输出无解或关闭程序

单源最短路问题:

8.Bellman-Ford:

  枚举每一条边(e(u,v,w))并松弛d(v)=min{d(v),d(u)+w}

  松弛n次即可,可以加一个优化,

  添加bool变量判断有没有进行松弛,没有就不用再进行该层循环了

9.SPFA:

  把需要松弛的边用queue存储,等松弛时拿出操作,代码:

#include<bits/stdc++.h>
using namespace std;
const int inf=;
bool vis[];
int dis[];
int tail[];
struct Ed{
int next,to,dis;
}ed[];
int m,n,s;
int num_edge;
inline void join(int from,int to,int dis){
num_edge++;
ed[num_edge].dis=dis;
ed[num_edge].to=to;
ed[num_edge].next=tail[from];
tail[from]=num_edge;
}
queue<int> q;
int main(){
scanf("%d%d%d",&n,&m,&s);
for(int i=;i<=m;i++)
dis[i]=inf;
vis[s]=;
dis[s]=;
for(int i=;i<=m;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
join(x,y,z);
}
q.push(s);
while(!q.empty()){
int now=q.front();
q.pop();
vis[now]=;
for(int i=tail[now];i;i=ed[i].next){
int end=ed[i].to;
if(dis[end]>dis[now]+ed[i].dis){
dis[end]=dis[now]+ed[i].dis;
if(!vis[end]){
q.push(end);
vis[end]=;
}
}
}
}
for(int i=;i<=n;i++){
printf("%d ",dis[i]);
}
return ;
}

  优化(上面提到过):

  记录每个点加入queue次数,如果大于n-1次,则这个点可能已经在负权环里面无限快乐了

  SPFA跑稀疏图很快,跑网格图就非常慢了

10.dijkstra

  前向星版本完成辣!

  代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int inf=;
struct Ed{
int to,dis,next;
}ed[];
int tail[];
int ed_num;
inline void add(int from,int to,int dis){
ed_num++;
ed[ed_num].dis=dis;
ed[ed_num].to=to;
ed[ed_num].next=tail[from];
tail[from]=ed_num;
}
int dis[];
bool vis[];
int n,m,s;
int main(){
scanf("%d%d%d",&n,&m,&s);
for(int i=;i<=n;i++)
dis[i]=inf;
dis[s]=;
vis[s]=;
for(int i=;i<=m;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
for(int i=tail[s];i;i=ed[i].next)
dis[ed[i].to]=ed[i].dis;
for(int i=;i<=n;i++){
int now=inf;
int k=;
for(int j=;j<=n;j++)
if((!vis[j])&&(now>dis[j])){
now=dis[j];
k=j;
}
if(k==) break;
vis[k]=;
for(int j=tail[k];j;j=ed[j].next)
if(dis[ed[j].to]>dis[k]+ed[j].dis)
dis[ed[j].to]=dis[k]+ed[j].dis;
}
for(int i=;i<=n;i++) printf("%d ",dis[i]);
return ;
}

  我开心地交了上去٩(๑>◡<๑)۶

  .......

11.DAG有向无环图与拓扑排序

  即找一个按顺序遍历所有节点的顺序,显然答案不唯一

  思想类似于完成一些任务,而某些任务有其前置任务

  思路:

  先将所有入度为0的点入队,再依次广搜,把入队的点删除,将它到达的点入度-1

  依次重复步骤,直到队列为空

  老师代码(懒得自己敲了):

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + ;
const int inf = << ;
struct edge{
int u, v;
};
vector<edge> edg[N];
int n, m, outdeg[N], ans[N];
queue<int> Queue;
void add(int u, int v)
{
edg[u].push_back((edge){u, v});
}
int main()
{
cin >> n >> m;
for (int u, v, i = ; i <= m; i++)
cin >> u >> v, add(v, u), outdeg[u]++; for (int i = ; i <= n; i++)
#include <bits/stdc++.h>

using namespace std;

const int maxn = ;
struct edge {
int u, v, w;
}edg[maxn];
int n, m, p[maxn], Q, dep[maxn];
vector<edge> adj[maxn]; // edges in MST
bool cmp(edge a, edge b)
{return a.w < b.w;}
int findp(int t)
{return p[t] ? p[t] = findp(p[t]) : t;} bool merge(int u, int v)
{
u = findp(u); v = findp(v);
if (u == v) return false;
p[u] = v; return true;
} int anc[maxn][], maxw[maxn][];
void dfs(int u)
{
for (int j = ; j < ; j++)
anc[u][j] = anc[anc[u][j - ]][j - ],
maxw[u][j] = max(maxw[u][j - ], maxw[anc[u][j - ]][j - ]);
for (unsigned i = ; i < adj[u].size(); ++i)
{
int v = adj[u][i].v, w = adj[u][i].w;
if (v != anc[u][])
dep[v] = dep[u] + , anc[v][] = u, maxw[v][] = w, dfs(v);
}
}
int solve(int u, int v)
{
int res = ;
if (dep[u] < dep[v]) swap(u, v);
for (int d = dep[u] - dep[v], j = ; d ; d >>= , ++j)
if (d & ) res = max(res, maxw[u][j]), u = anc[u][j];
//adjust u & v to the same depth
if (u == v) return res; //u & v meet now for (int j = ; j >= ; j--)
if (anc[u][j] != anc[v][j]) // if anc[u][j] & anc[v][j] dont meet together, then jump u & v
res = max(res, maxw[u][j]),
res = max(res, maxw[v][j]),
u = anc[u][j], v = anc[v][j];
//now u & v 's lca must be their parent now, in an easy word, it's anc[u][0] or anc[v][0] res = max(res, maxw[u][]);
res = max(res, maxw[v][]);
u = anc[u][]; v = anc[v][];
return res;
}
int main()
{
cin >> n >> m >> Q;
for (int i = , u, v, w; i <= m; i++)
cin >> u >> v >> w, edg[i] = (edge){u, v, w};
sort(edg + , edg + m + , cmp);
for (int i = , u, v; i <= m; i++)
if (merge(u = edg[i].u, v = edg[i].v))
adj[u].push_back(edg[i]),
adj[v].push_back((edge){v, u, edg[i].w}); dfs();
for (int u, v, i = ; i <= Q; i++)
cin >> u >> v, cout << solve(u, v) << endl;
}

if (outdeg[i] == ) Queue.push(i);
for (int i = ; i <= n; i++)
{
if (Queue.empty())
{printf("Not DAG"); return ;}
int u = Queue.front(); Queue.pop(); ans[n - i + ] = u;
for (int e = ; e < edg[u].size(); e++)
{
int v = edg[u][e].v;
if (--outdeg[v] == ) Queue.push(v);
}
}
}

11.lca(最近公共祖先)

  思路,先将二者跳到同一深度,再将x和y以尽量远的高度向上跳,直到父节点唯一

  代码:

#include <bits/stdc++.h>

using namespace std;

const int maxn = ;
struct edge {
int u, v, w;
}edg[maxn];
int n, m, p[maxn], Q, dep[maxn];
vector<edge> adj[maxn]; // edges in MST
bool cmp(edge a, edge b)
{return a.w < b.w;}
int findp(int t)
{return p[t] ? p[t] = findp(p[t]) : t;} bool merge(int u, int v)
{
u = findp(u); v = findp(v);
if (u == v) return false;
p[u] = v; return true;
} int anc[maxn][], maxw[maxn][];
void dfs(int u)
{
for (int j = ; j < ; j++)
anc[u][j] = anc[anc[u][j - ]][j - ],
maxw[u][j] = max(maxw[u][j - ], maxw[anc[u][j - ]][j - ]);
for (unsigned i = ; i < adj[u].size(); ++i)
{
int v = adj[u][i].v, w = adj[u][i].w;
if (v != anc[u][])
dep[v] = dep[u] + , anc[v][] = u, maxw[v][] = w, dfs(v);
}
}
int solve(int u, int v)
{
int res = ;
if (dep[u] < dep[v]) swap(u, v);
for (int d = dep[u] - dep[v], j = ; d ; d >>= , ++j)
if (d & ) res = max(res, maxw[u][j]), u = anc[u][j];
//adjust u & v to the same depth
if (u == v) return res; //u & v meet now for (int j = ; j >= ; j--)
if (anc[u][j] != anc[v][j]) // if anc[u][j] & anc[v][j] dont meet together, then jump u & v
res = max(res, maxw[u][j]),
res = max(res, maxw[v][j]),
u = anc[u][j], v = anc[v][j];
//now u & v 's lca must be their parent now, in an easy word, it's anc[u][0] or anc[v][0] res = max(res, maxw[u][]);
res = max(res, maxw[v][]);
u = anc[u][]; v = anc[v][];
return res;
}
int main()
{
cin >> n >> m >> Q;
for (int i = , u, v, w; i <= m; i++)
cin >> u >> v >> w, edg[i] = (edge){u, v, w};
sort(edg + , edg + m + , cmp);
for (int i = , u, v; i <= m; i++)
if (merge(u = edg[i].u, v = edg[i].v))
adj[u].push_back(edg[i]),
adj[v].push_back((edge){v, u, edg[i].w}); dfs();
for (int u, v, i = ; i <= Q; i++)
cin >> u >> v, cout << solve(u, v) << endl;
}

最新文章

  1. 精彩 JavaScript 代码片段
  2. C和指针 第十五章 错误报告perror和exit
  3. Message和handler传递对象
  4. 【JavaEE企业应用实战学习记录】MyGetAttributeListener
  5. Linux命令行 3大技巧归纳
  6. div错位解决IE6、IE7、IE8样式不兼容问题
  7. 如何查看数据文件或者Log文件是否增长过?
  8. django开发简易博客(一)
  9. [题解]bzoj 3223 文艺平衡树
  10. python基础(3):输入输出与运算符
  11. 为什么覆写equals必须要覆写hashCode?
  12. UVA-10037 Bridge---过河问题进阶版(贪心)
  13. Nginx - 代理、缓存
  14. C# NPOI 操作Excel 案例
  15. https进行配置以及http跳转到https配置
  16. rhel配置网络yum源
  17. linux c tcp p2p
  18. HTML5 本地缓存 window.localStorage
  19. scrapy 中 xpath 用string方法提取带有空格符解决方法
  20. nodejs+react使用webpack打包时控制台报错

热门文章

  1. not in和not exists区别
  2. Django学习笔记(17)——BBS+Blog项目开发(1)验证码功能的实现
  3. 机器学习(六)--------神经网络(Neural Networks)
  4. FocusVisualStyle
  5. [笔记] NuGet Warning NU5100 处理
  6. Python - 获取本机IP地址、Mac地址
  7. a标使用window.open()方法
  8. E203 译码模块(2)
  9. 想入门Web安全,这些基础知识都学会了吗?
  10. SAP 如何得到交货单上的序列号清单?