摘自:http://blog.csdn.net/pi9nc/article/details/27209455

看了好久没看懂,最后在这篇博客中看明白了。

费马定理的应用,加上二次探测定理。

Fermat素数测试

1819年有人发现了Fermat小定理逆命题的第一个反例:虽然2的340次方除以341余1,但341=11*31。后来,人们又发现了561, 645, 1105等数都表明a=2时Fermat小定理的逆命题不成立。人们把所有能整除2^(n-1)-1的合数n叫做伪素数(pseudoprime)。

不满足的n一定不是素数;如果满足的话则多半是素数。这样,一个比试除法效率更高的素性判断方法出现了:制作一张伪素数表,记录某个范围内的所有伪素数,那么所有满足且不在伪素数表中的n就是素数。之所以这种方法更快,是因为我们可以使用二分法快速计算的值(快速幂)。

然而不借助伪素数表的时候,算法出错的概率太高,需要改进.

我们刚才只考虑了a=2的情况。一个合数可能在a=2时通过了测试,但a=3时的计算结果却排除了素数的可能。于是,人们扩展了伪素数的定义,称满足a^(n-1) mod n = 1的合数n叫做以a为底的伪素数(pseudoprime to base a)

随机选择若干个小于待测数的正整数作为底数a进行若干次测试,只要有一次没有通过测试就立即把这个数扔回合数的世界。这就是Fermat素性测试

费马小定理毕竟只是素数判定的一个必要条件.满足费马小定理条件的整数n未必全是素数.有些合数也满足费马小定理的条件***.这些合数被称作Carmichael数,前3个Carmichael数是561,1105,1729. Carmichael数是非常少的.在1~100000000范围内的整数中,只有255个Carmichael数.

***费马小定理的前提是a和n互质。当n本身就是素数的时候如果a<n那么a和n始终互素;但n不是素数时a和n不互素的话不能用费马小定理。也就是说,Carmichael数需要排除a和n不互素的情况.

利用下面的二次探测定理可以对上面的素数判定算法作进一步改进,以避免将Carmichael数当作素数.

Miller_Rabin素数测试算法

二次探测定理优化

Miller和Rabin两个人的工作让Fermat素性测试迈出了革命性的一步,建立了Miller-Rabin素性测试算法。新的测试基于下面的定理:

如果p是素数,x是小于p的正整数,且,那么要么x=1,要么x=p-1。

这是显然的,因为相当于p能整除,也即p能整除(x+1)(x-1)。

由于p是素数,那么只可能是x-1能被p整除(此时x=1) 或 x+1能被p整除(此时x=p-1)。

我们下面来演示一下上面的定理如何应用在Fermat素性测试上。前面说过341可以通过以2为底的Fermat测试,因为2^340 mod 341=1。如果341真是素数的话,那么2^170mod 341只可能是1或340;当算得2^170 mod 341确实等于1时,我们可以继续查看2^85除以341的结果。我们发现,2^85 mod 341=32,这一结果摘掉了341头上的素数皇冠

这就是Miller-Rabin素性测试的方法。不断地提取指数n-1中的因子2,把n-1表示成(其中d是一个奇数)。那么我们需要计算的东西就变成了除以n的余数。于是,要么等于1,要么等于n-1。如果等于1,定理继续适用于,这样不断开方开下去,直到对于某个i满足或者最后指数中的2用完了得到的这样,Fermat小定理加强为如下形式:

尽可能提取因子2,把n-1表示成,如果n是一个素数,那么或者,或者存在某个i使得 ( 0<=i<r ) (注意i可以等于0,这就把的情况统一到后面去了)

Miller-Rabin素性测试同样是不确定算法,我们把可以通过以a为底的Miller-Rabin测试的合数称作以a为底的强伪素数(strong pseudoprime)。第一个以2为底的强伪素数为2047。第一个以2和3为底的强伪素数则大到1 373 653。
Miller-Rabin算法的代码也非常简单:计算d和r的值(可以用位运算加速,即快速积,快速幂),然后二分计算的值,最后把它平方r次。

/*对应hoj 1356 Prime Judge*/
#include <cstdio>
#define MT 5
using namespace std;
typedef long long ll;
int prime[] = {, , , , }; inline ll mulmod(ll a, ll b, ll k) {//*标出了核心语句
// a %= k;
// b %= k;
if (b < ) {///将b变为正的
a = -a;
b = -b;
}
ll re = , temp = a;
///re为最终结果,temp保持循环.re需要temp的时候,就加一下,否则temp继续累乘
while (b) {
if (b & ) re += temp;///二进制思想,需要即加*
// re %= k;
b >>= ;///下一位等待检测**
temp <<= ;///temp一直累乘***
// temp %= k;
}
return re%k;*/
/*实际上呢,用以上的函数在hoj 1356是会TLE的(mod太多次了...)~应该用下面的方法...*/
return (a*b)%k;//-_-b
}
//此时不需要再模,于是只剩下核心语句~快速幂和快速积都是二进制思想,核心是一样的
inline ll powermod(ll a, ll b, ll k) {
ll re = , temp = a;
while (b) {
if (b & ) re = mulmod(re, temp, k);//只是把"加"入答案变为"乘"入答案
temp = mulmod(temp, temp, k);
b >>= ;
}
return re;
} int TwiceDetect(ll a, ll b, ll k) {
int t = ;
ll x, y;
while ((b & ) == ) {
b >>= ;
t++;
}
/// b = d * 2^t; b = d;
y = x = powermod(a, b, k);/// x = y = a^d % n
///二次探测定理是反向递归的,当然也可以用如下的正向迭代法去测试
while (t--) {
y = mulmod(x, x, k);
if (y == && x != && x != k - )///注意y!=1的时候是不做判断的,即对应
return ;///递归时在某一环节x==p-1的情况,对此x开方则无意义,但是迭代的话不能break,只能ignore并继续.
x = y;///继续向高次迭代,那么至少最后一次应该是等于1的(Fermat小定理)
}
return y;
} bool Miller_Rabin(ll n) {
int i;
ll tmp;
for (i = ; i < MT; i++) {
tmp = prime[i];
if (n == prime[i]) return true;
if (TwiceDetect(tmp, n - , n) != )
break;
}
return (i == MT);
} int main() {
ll n;
while (scanf("%lld", &n) == ) {
if ((n > ) && Miller_Rabin(n)) {
printf("YES\n");
} else {
printf("NO\n");
}
}
return ;
}

对于大数的素性判断,目前Miller-Rabin算法应用最广泛。一般底数仍然是随机选取,但当待测数不太大时,选择测试底数就有一些技巧了。比如,如果被测数小于4 759 123 141,那么只需要测试三个底数2, 7和61就足够了。当然,你测试的越多,正确的范围肯定也越大。如果你每次都用前7个素数(2, 3, 5, 7, 11, 13和17)进行测试,所有不超过341 550 071 728 320的数都是正确的。如果选用2, 3, 7, 61和24251作为底数,那么10^16内唯一的强伪素数为46 856 248 255 981。这样的一些结论使得Miller-Rabin算法在OI中非常实用。通常认为,Miller-Rabin素性测试的正确率可以令人接受,随机选取k个底数进行测试算法的失误率大概为4^(-k)。

最新文章

  1. antd 学习
  2. Quality Trimming Via Trimmomatic
  3. linux命令细究
  4. 在ArcGIS 10.3标注中竖排文字
  5. RPI学习--环境搭建_无线网络的连接
  6. Construct a basic automation test framework
  7. 使用Spring的Property文件存储测试数据 - 初始化
  8. oracle层次查询的陷阱
  9. 【AngularJs】---实现select的ng-options
  10. The Doors - POJ 1556 (线段相交)
  11. java学习之数据库
  12. HTTP学习笔记——URL与资源
  13. 使用Eclipse/MyEclipse开发Java程序
  14. SQL 语句 (二) --- SELECT
  15. Apache Kafka简介与安装(二)
  16. 你需要Mobx还是Redux?
  17. java基础知识—变量、数据类型和运算符
  18. 选择困难症的福音——团队Scrum冲刺阶段-Day 4
  19. 自己写的thinkphp自动生成类
  20. 设置Linux交换分区

热门文章

  1. MariaDB -- 数据类型
  2. python爬虫实践
  3. JAVA进阶-网络编程
  4. linux 下查看一个进程执行路径
  5. @Override用在哪儿
  6. C#.NEt-GDI+中的Pen測试
  7. webpy学习笔记之中的一个
  8. SSDP 抓包
  9. python utc时间转换为strftime
  10. 假如Java对象是个人&#183;&#183;&#183;&#183;&#183;&#183;