上一篇介绍了vc(windows)平台在x64体系当中,c函数的传参方式。本篇将要介绍gcc(类linux,mac)平台在x64中,c函数是如何传参的。
为节约时间和篇幅,首先来定义一个有十个参数的函数,参数类型包罗了内嵌类型:

int foo(char c, short s, int i, long l, long long ll, char* p, // 前6个参数,注意我的划分和参数类型
void** pp, float f, void* x, double d);

反汇编调用

foo('c', , , , , (char*)0x4, (void**)0x5, .f, (void*), .f);
0x000000000040067b <+>: movsd 0x2d5(%rip),%xmm0 # 0x400958 <__dso_handle+> double d = .f
0x0000000000400683 <+>: movq $0x6,0x8(%rsp) # (void*)
0x000000000040068c <+>: movq $0x5,(%rsp) # (void**) 0x5
0x0000000000400694 <+>: movapd %xmm0,%xmm1
0x0000000000400698 <+>: movss 0x2c0(%rip),%xmm0 # 0x400960 <__dso_handle+> float f = .f
0x00000000004006a0 <+>: mov $0x4,%r9d # (char*) 0x4
0x00000000004006a6 <+>: mov $0x3,%r8d # (long long)
0x00000000004006ac <+>: mov $0x2,%ecx # (long)
0x00000000004006b1 <+>: mov $0x1,%edx # (int)
0x00000000004006b6 <+>: mov $0x0,%esi # (short)
0x00000000004006bb <+>: mov $0x63,%edi # (char) 'c'
0x00000000004006c0 <+>: callq 0x4005c4 <_Z3foocsilxPcPPvfS0_d>

可以看到数据类型分两类,浮点和非浮点型。我传的实参数也是按这两类划分递增的。
非浮点参数分别是 'c', 0, 1, 2, 3, (char*)0x4, (void**)0x5, (void*)6。先将前6个优先按顺序按排到rdi,rsi,rdx,rcx,r8和r9。剩下(void**)5,(void*)6。
浮点参数分别是 1.f, 2.f。 按顺序安排到xmm0,xmm1。
最后将两种类型不能放入寄存器的剩余参数,由右向左依次入栈。

下面再定义一个超级无敌多参数的函数,用尽全部传参寄存器,印证我上面的分析。

int foo2(char c, short s, int i, long l, long long ll, char* p,
void** pp, float f, void* x, double d, // 至此和上面foo定义一样
float xmm2, float xmm3, float xmm4, float xmm5, float xmm6, float xmm7, // 追加6个浮点型用尽余下的寄存器
float xmmUnknow);

反汇编调用

foo2('c', , , , , (char*), (void**), .f, (void*), .f, .f, .f, .f, .f, .f, .f, (float)i);
0x00000000004006c5 <+>: cvtsi2ssl -0xc(%rbp),%xmm0
0x00000000004006ca <+>: movsd 0x286(%rip),%xmm1 # 0x400958 <__dso_handle+>
0x00000000004006d2 <+>: movss %xmm0,0x10(%rsp) # *** 最尾的浮点型只被放入堆栈中
0x00000000004006d8 <+>: movq $0x6,0x8(%rsp) # *** 和foo一样
0x00000000004006e1 <+>: movq $0x5,(%rsp) # *** 和foo一样
0x00000000004006e9 <+>: movss 0x273(%rip),%xmm7 # 0x400964 <__dso_handle+>
0x00000000004006f1 <+>: movss 0x26f(%rip),%xmm6 # 0x400968 <__dso_handle+>
0x00000000004006f9 <+>: movss 0x26b(%rip),%xmm5 # 0x40096c <__dso_handle+>
0x0000000000400701 <+>: movss 0x267(%rip),%xmm4 # 0x400970 <__dso_handle+>
0x0000000000400709 <+>: movss 0x263(%rip),%xmm3 # 0x400974 <__dso_handle+>
0x0000000000400711 <+>: movss 0x25f(%rip),%xmm2 # 0x400978 <__dso_handle+>
0x0000000000400719 <+>: movss 0x23f(%rip),%xmm0 # 0x400960 <__dso_handle+>
0x0000000000400721 <+>: mov $0x4,%r9d
0x0000000000400727 <+>: mov $0x3,%r8d
0x000000000040072d <+>: mov $0x2,%ecx
0x0000000000400732 <+>: mov $0x1,%edx
0x0000000000400737 <+>: mov $0x0,%esi
0x000000000040073c <+>: mov $0x63,%edi
0x0000000000400741 <+>: callq 0x4005f5 <_Z4foo2csilxPcPPvfS0_dfffffff>

非浮点参数分别是 'c', 0, 1, 2, 3, (char*)0x4, (void**)0x5, (void*)6。先将前6个优先按顺序按排到rdi,rsi,rdx,rcx,r8和r9。剩下(void**)5,(void*)6。
浮点参数分别是 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, (float)i。 按顺序安排到xmm0-xmm7,剩下(float)i。
最后将两种类型不能放入寄存器的剩余参数,分别是(void**)5,(void*)6,(float)i,由右向左依次入栈。

最后我选取一个特例来作为本篇结束,gcc如何传递临时对象。

struct point {float x,y;};
struct obj
{
int i;
float f[];
void foo(point pt)
{
f[] += pt.x;
f[] *= pt.y;
}
};

反汇编调用

obj j;
point pt;
j.foo(pt);
0x000000000040078d <+>: movq -0x20(%rbp),%xmm0
0x0000000000400792 <+>: lea -0x50(%rbp),%rax
0x0000000000400796 <+>: mov %rax,%rdi
0x0000000000400799 <+>: callq 0x400814 <_ZN3obj3fooE5point>

rdi是什么大家都清楚,剩下另一个参数载体就是xmm0了。再看一看函数定义,参数是个临时对象,再看对象定义,point结构体是两个单精浮点,共占64位。而xmm寄存器可以存放4个单精浮点数据。
下面再看成员函数foo的反汇编刚好印证了。

Dump of assembler code for function _ZN3obj3fooE5point:
0x0000000000400814 <+>: push %rbp
0x0000000000400815 <+>: mov %rsp,%rbp
0x0000000000400818 <+>: mov %rdi,-0x8(%rbp)
0x000000000040081c <+>: movq %xmm0,-0x10(%rbp) # 低64位存放了临时对象
0x0000000000400821 <+>: mov -0x8(%rbp),%rax
0x0000000000400825 <+>: movss 0xc(%rax),%xmm1
0x000000000040082a <+>: movss -0x10(%rbp),%xmm0 # pt.x
0x000000000040082f <+>: addss %xmm1,%xmm0
0x0000000000400833 <+>: mov -0x8(%rbp),%rax
0x0000000000400837 <+>: movss %xmm0,0xc(%rax)
0x000000000040083c <+>: mov -0x8(%rbp),%rax
0x0000000000400840 <+>: movss 0x10(%rax),%xmm1
0x0000000000400845 <+>: movss -0xc(%rbp),%xmm0 # pt.y
0x000000000040084a <+>: mulss %xmm1,%xmm0
0x000000000040084e <+>: mov -0x8(%rbp),%rax
0x0000000000400852 <+>: movss %xmm0,0x10(%rax)
0x0000000000400857 <+>: leaveq
0x0000000000400858 <+>: retq
End of assembler dump.

到此为止,我已经用了三篇来介绍x64体系三种常用平台在c/c++/objc编程的传参方式。
上篇,通过lldb调试介绍mac平台下x64传参;
中篇,通过windbg调试介绍windows平台下x64传参;
下篇,通过gdb调试介绍gcc(类linux)平台下x64传参,本篇对于mac,ios同样适用。

预告:后面将要进入反汇编分析objc程序。

最新文章

  1. java分享第二十天(build.xml的语法及写法)
  2. 盐水的故事[HDU1408]
  3. NSDate 时间比较...等
  4. BZOJ2186 欧拉函数
  5. Android侧滑
  6. Javascript中setTimeout()的用法详解
  7. javascript 函数调用方式
  8. C++11 生产者消费者
  9. struts2用了哪几种模式
  10. PreTranslateMessage作用和用法
  11. Android 自定义回调
  12. Minimum Sum(思维)
  13. cocos2dx进阶学习之CCAction
  14. 线程池Executors探究
  15. Android 根据字符串动态获取资源ID
  16. vue生命周期图片
  17. MySQL的使用及优化
  18. mysql 如何在访问某张数据表按照某个字段分类输出
  19. 使用laravel搭建CURD后台页面
  20. Python2.7-shutil

热门文章

  1. python编程系列---多线程共享全局变量出现了安全问题的解决方法
  2. 《HTML5+CSS3+JavaScript 从入门到精通(标准版)》学习笔记(二)
  3. 百万年薪python之路 -- HTML基础
  4. Java基础(三十二)JDBC(2)连接数据库
  5. Java基础(十二)lambda表达式
  6. 前后端分离,转json格式问题
  7. $POJ2942\ Knights\ of\ the\ Round\ Table$ 图论
  8. CTR@DeepFM
  9. windows 利用环境变量%PATH%中目录可写提权
  10. python学习之【第九篇】:Python中的变量作用域