Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

4.1 Definition of effect modification

什么是 effect modification, 即causal effect在不同因素\(V\)下不同, 即

\[\mathbb{E} [Y^{a=1} - Y^{a=0}|V=1]
\not =
\mathbb{E} [Y^{a=1} - Y^{a=0}|V=0],
\]

或者

\[\frac{
\mathbb{E} [Y^{a=1}|V=1]
}{
\mathbb{E} [Y^{a=0}|V=1]
}
\not =
\frac{
\mathbb{E} [Y^{a=1}|V=0]
}{
\mathbb{E} [Y^{a=0}|V=0]
}.
\]

也就是说\(V\)这个因素会影响causal effect, 或许变好或许变差.

另外需要一提的是, additive effective modification 或许和 multiplicative effect modification 有偏差.

有可能前者显示\(V\)是一个effect modifier, 但是后者显示它不是.

所以一个因素是否是effect modifier还得依赖你所选的衡量指标.

4.2 Stratification to identify effect modification

\[\mathrm{Pr} [Y^{a=1}=1|V=1] - \mathrm{Pr} [Y^{a=0}=1|V=1], \\
\mathrm{Pr} [Y=1|A=1,V=1] - \mathrm{Pr} [Y=1|A=0,V=1], \\
\]

4.3 Why care about effect modification

可迁移性

4.4 Stratification as a form of adjustment

通过\(V\)将整个数据集分成子集, 并对每个子集计算相应的casual effect.

当然, 在此过程中我们往往也是需要条件可交换性的.

4.5 Matching as another form of adjustment

通过随机选择, 使得在不同子集中, 所关心元素的数量是一致的.

比如根据\(A\)划分treated 和 untreated, 通过随机选择使得\(L=l\)在两个子集中的数目是一样的.

此时,

\[\begin{array}{ll}
\mathrm{Pr}[Y^{a=1}]
& = \sum_l \mathrm{Pr} [Y^{a=1}|L=l] \mathrm{Pr}[L=l] \\
& = p \sum_l \mathrm{Pr} [Y|A=1,L=l] \\
& = \frac{1}{\mathrm{Pr}[A=1]} \sum_l \mathrm{Pr} [Y,A=1,L=l] \\
& = \mathrm{Pr} [Y|A=1]
\end{array}
\]

此时, 计算causal effect只需考虑\(\mathrm{Pr}[Y|A=a]\)即可.

4.6 Effect modification and adjustment methods

Standard, IP weighting, stratification, matching这几个方法的比较.

Fine Point

Effect in the treated

\[\mathrm{Pr} [Y=1|A=1]
\not =
\mathrm{Pr} [Y^{a=0}=1|A=1].
\]

Transportability

Collapsibility and the odds ratio

Technical Point

Computing the effect in the treated

计算\(\mathbb{E}[Y^a|A=a']\)只需要部分可交换性\(Y^a \amalg A|L\)即可.

Standard:

\[\sum_l \mathbb{E} [Y|A=a,L=l] \mathrm{Pr}[L=l|A=a'].
\]

IP weighting:

\[\frac{
\mathbb{E}[
\frac{I(A=a)Y}{f(A|L)}
\mathrm{Pr}[A=a'|L]
]
}
{
\mathbb{E}[
\frac{I(A=a)}{f(A|L)}
\mathrm{Pr}[A=a'|L]
]
}.
\]

注: 分母实际上是\(\mathrm{Pr}[A=a']\).

Pooling of stratum-specific effect measures

Relation between marginal and conditional risk ratios

\[\mathrm{Pr} [Y^{a=1}=1]
/
\mathrm{Pr} [Y^{a=0}=0] =
\sum_l
\frac{
\mathrm{Pr} [Y^{a=1}=1| L=l]
}
{
\mathrm{Pj} [Y^{a=0}=1|L=l]
}
w(l).
\]

其中,

\[w(l)
=
\frac{
\mathrm{Pr} [Y^{a=0}=1, L=l]
}
{
\mathrm{Pr} [Y^{a=0}=1]
}, \quad
\sum_l w(l)=1.
\]

最新文章

  1. 《Web开发过滤Javascript、HTML的方法》
  2. 一种在视频OBJECT标签上放置均分四个区域的框选方法
  3. kali 更新源
  4. iOS-RunLoop,为手机省电,节省CPU资源,程序离不开的机制
  5. Volley使用指南第四回(来自developer.android)
  6. [置顶] linux下让php支持mysql——寻找消失的mysql
  7. Hacker(16)----防范端口扫描与嗅探
  8. WIN7/8系统下程序接收不到WM_COPYDATA 消息的原因和解决
  9. PowerDesigner 对 Oracle 作 逆向工程
  10. javascript与jQuery选项卡效果
  11. UNIX环境高级编程——信号说明列表
  12. js实现html截图生成图片
  13. Numpy 多维数组简介
  14. VS Code常用快捷键
  15. Shiro简介——《跟我学Shiro》
  16. mysql学习笔记--数据库设计
  17. 【iCore1S 双核心板_FPGA】例程十六:基于SPI的ARM与FPGA通信实验
  18. MongoDB数据库连接失败
  19. html5+javascript的管廊监控页面
  20. TPO-20-Apply for the undergraduate research fund

热门文章

  1. Hive(一)【基本概念、安装】
  2. 零基础学习java------21---------动态代理,java8新特性(lambda, stream,DateApi)
  3. HTTP 之 options预请求
  4. win10产品密钥 win10永久激活密钥(可激活win10所有版本)
  5. 利用Lombok编写优雅的spring依赖注入代码,去掉繁人的@Autowired
  6. Java 总纲
  7. docker之镜像制作
  8. oracle中分组中的ROLLUP和CUBE选项
  9. 智龙开发板搭建llsp环境
  10. 【划重点】Python pandas简介