自己想要打印EMIO管脚的物理地址,在SDK提供的头文件中加入printf是无法打印的,基于此

我将需要打印地址的几个函数提取出来,放在main函数中,然后在里面加入printf打印这些用户管脚的地址:

Ps_SetDirectionPin   //设置方向,原函数XGpioPs_SetDirectionPin
Ps_SetOutputEnablePin//设置使能,原函数XGpioPs_SetOutputEnablePin
Ps_WritePin //写入值,原函数XGpioPs_WritePin

将其修改为自定义函数,目的就是利用串口打印物理地址

#include <stdio.h>
#include "xgpiops.h"
#include "sleep.h" /****************************************************************************/
/**
*
* Set the Direction of the specified pin.
*
* @param InstancePtr is a pointer to the XGpioPs instance.
* @param Pin is the pin number to which the Data is to be written.
* Valid values are 0-117 in Zynq and 0-173 in Zynq Ultrascale+ MP.
* @param Direction is the direction to be set for the specified pin.
* Valid values are 0 for Input Direction, 1 for Output Direction.
*
* @return None.
*
*****************************************************************************/
void Ps_SetDirectionPin(XGpioPs *InstancePtr, u32 Pin, u32 Direction)
{
u8 Bank;
u8 PinNumber;
u32 DirModeReg; Xil_AssertVoid(InstancePtr != NULL);
Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
Xil_AssertVoid(Pin < InstancePtr->MaxPinNum);
Xil_AssertVoid(Direction <= (u32)); /* Get the Bank number and Pin number within the bank. */
XGpioPs_GetBankPin((u8)Pin, &Bank, &PinNumber); DirModeReg = XGpioPs_ReadReg(InstancePtr->GpioConfig.BaseAddr,
((u32)(Bank) * XGPIOPS_REG_MASK_OFFSET) +
XGPIOPS_DIRM_OFFSET); if (Direction!=(u32)) { /* Output Direction */
DirModeReg |= ((u32) << (u32)PinNumber);
} else { /* Input Direction */
DirModeReg &= ~ ((u32) << (u32)PinNumber);
}
printf("Direction:%lx,%lx,%lx\n",InstancePtr->GpioConfig.BaseAddr,((u32)(Bank) * XGPIOPS_REG_MASK_OFFSET) +
XGPIOPS_DIRM_OFFSET,DirModeReg); XGpioPs_WriteReg(InstancePtr->GpioConfig.BaseAddr,
((u32)(Bank) * XGPIOPS_REG_MASK_OFFSET) +
XGPIOPS_DIRM_OFFSET, DirModeReg);
} /****************************************************************************/
/**
*
* Set the Output Enable of the specified pin.
*
* @param InstancePtr is a pointer to the XGpioPs instance.
* @param Pin is the pin number to which the Data is to be written.
* Valid values are 0-117 in Zynq and 0-173 in Zynq Ultrascale+ MP.
* @param OpEnable specifies whether the Output Enable for the specified
* pin should be enabled.
* Valid values are 0 for Disabling Output Enable,
* 1 for Enabling Output Enable.
*
* @return None.
*
* @note None.
*
*****************************************************************************/
void Ps_SetOutputEnablePin(XGpioPs *InstancePtr, u32 Pin, u32 OpEnable)
{
u8 Bank;
u8 PinNumber;
u32 OpEnableReg; Xil_AssertVoid(InstancePtr != NULL);
Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
Xil_AssertVoid(Pin < InstancePtr->MaxPinNum);
Xil_AssertVoid(OpEnable <= (u32)); /* Get the Bank number and Pin number within the bank. */
XGpioPs_GetBankPin((u8)Pin, &Bank, &PinNumber); OpEnableReg = XGpioPs_ReadReg(InstancePtr->GpioConfig.BaseAddr,
((u32)(Bank) * XGPIOPS_REG_MASK_OFFSET) +
XGPIOPS_OUTEN_OFFSET); if (OpEnable != (u32)) { /* Enable Output Enable */
OpEnableReg |= ((u32) << (u32)PinNumber);
} else { /* Disable Output Enable */
OpEnableReg &= ~ ((u32) << (u32)PinNumber);
}
printf("OutputEn:%lx,%lx,%lx\n",InstancePtr->GpioConfig.BaseAddr,((u32)(Bank) * XGPIOPS_REG_MASK_OFFSET) +
XGPIOPS_OUTEN_OFFSET,OpEnableReg); XGpioPs_WriteReg(InstancePtr->GpioConfig.BaseAddr,
((u32)(Bank) * XGPIOPS_REG_MASK_OFFSET) +
XGPIOPS_OUTEN_OFFSET, OpEnableReg);
} /****************************************************************************/
/**
*
* Write data to the specified pin.
*
* @param InstancePtr is a pointer to the XGpioPs instance.
* @param Pin is the pin number to which the Data is to be written.
* Valid values are 0-117 in Zynq and 0-173 in Zynq Ultrascale+ MP.
* @param Data is the data to be written to the specified pin (0 or 1).
*
* @return None.
*
* @note This function does a masked write to the specified pin of
* the specified GPIO bank. The previous state of other pins
* is maintained.
*
*****************************************************************************/
void Ps_WritePin(XGpioPs *InstancePtr, u32 Pin, u32 Data)
{
u32 RegOffset;
u32 Value;
u8 Bank;
u8 PinNumber;
u32 DataVar = Data; Xil_AssertVoid(InstancePtr != NULL);
Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
Xil_AssertVoid(Pin < InstancePtr->MaxPinNum); /* Get the Bank number and Pin number within the bank. */
XGpioPs_GetBankPin((u8)Pin, &Bank, &PinNumber);
printf("bank=%d,PinNumber=%d\n",Bank,PinNumber);
if (PinNumber > 15U) {
/* There are only 16 data bits in bit maskable register. */
PinNumber -= (u8);
RegOffset = XGPIOPS_DATA_MSW_OFFSET;
} else {
RegOffset = XGPIOPS_DATA_LSW_OFFSET;
} /*
* Get the 32 bit value to be written to the Mask/Data register where
* the upper 16 bits is the mask and lower 16 bits is the data.
*/
DataVar &= (u32)0x01;
Value = ~((u32) << (PinNumber + 16U)) & ((DataVar << PinNumber) | 0xFFFF0000U); printf("write:%lx,%lx,%lx\n",InstancePtr->GpioConfig.BaseAddr,((u32)(Bank) * XGPIOPS_DATA_MASK_OFFSET) +
RegOffset,Value); XGpioPs_WriteReg(InstancePtr->GpioConfig.BaseAddr,
((u32)(Bank) * XGPIOPS_DATA_MASK_OFFSET) +
RegOffset, Value);
} int main()
{ #if 1
static XGpioPs psGpioInstancePtr;
XGpioPs_Config* GpioConfigPtr; int iPinNumber= ; //想想为什么是54
u32 uPinDirection = 0x1; //1表示输出,0表示输入 int xStatus;
//--MIO的初始化
GpioConfigPtr = XGpioPs_LookupConfig(XPAR_PS7_GPIO_0_DEVICE_ID);
if(GpioConfigPtr == NULL)
return XST_FAILURE;
printf("baseAddr:0x%lx\n",GpioConfigPtr->BaseAddr);
xStatus = XGpioPs_CfgInitialize(&psGpioInstancePtr,GpioConfigPtr, GpioConfigPtr->BaseAddr);
if(XST_SUCCESS != xStatus)
print(" PS GPIO INIT FAILED \n\r"); //--MIO的输入输出操作
Ps_SetDirectionPin(&psGpioInstancePtr, iPinNumber,uPinDirection);//配置IO输出方向
Ps_SetOutputEnablePin(&psGpioInstancePtr, iPinNumber,);//配置IO的输出
//while(1)
//{
Ps_WritePin(&psGpioInstancePtr, iPinNumber, );//输出1
sleep();//延时
Ps_WritePin(&psGpioInstancePtr, iPinNumber, );//输出0
sleep();//延时
//} #endif return ; }

上述代码是利用SDK提供的API接口实现led的控制。

如果在做驱动开发时,需要知道led对应的(控制寄存器、数据寄存器)物理地址,因此根据上述代码实现了自己的裸机驱动代码

#include <stdio.h>
#include "xgpiops.h"
#include "sleep.h" #define MY_GPIO_BASE_ADDR 0xE000A000
#define XGPIOPS_DATA_MASK_OFFSET 0x00000008U /* Data/Mask Registers offset */
#define XGPIOPS_REG_MASK_OFFSET 0x00000040U /* Registers offset */
#define XGPIOPS_DIRM_OFFSET 0x00000204U /* Direction Mode Register, RW */
#define XGPIOPS_OUTEN_OFFSET 0x00000208U /* Output Enable Register, RW */
#define XGPIOPS_DATA_LSW_OFFSET 0x00000000U /* Mask and Data Register LSW, WO */
#define XGPIOPS_DATA_MSW_OFFSET 0x00000004U /* Mask and Data Register MSW, WO */ int main()
{ //引脚EMIO54等价于bank=2,PinNum=0
//引脚EMIO57等价于bank=2,PinNum=3
u8 Bank=;
u8 PinNumber=; /**************对应管脚功能配置**********************/
u32 Direction=0X01;//设置MIO_54为输出
u32 OpEnable=0X01;//使能
u32 DataVar = 0X01;//1亮 //方向寄存器地址(由bank决定)
u32 *Gpio_DIR =( u32 *)(MY_GPIO_BASE_ADDR+
((u32)(Bank) * XGPIOPS_REG_MASK_OFFSET) +
XGPIOPS_DIRM_OFFSET); //方向寄存器,1为输出
//使能寄存器地址(由bank决定)
u32 *Gpio_EN =( u32 *)(MY_GPIO_BASE_ADDR+
((u32)(Bank) * XGPIOPS_REG_MASK_OFFSET) +
XGPIOPS_OUTEN_OFFSET);//使能寄存器,1使能
//数据寄存器地址(由bank和PinNumuber决定)
u32 RegOffset; //16位宽,后面要注意
if (PinNumber > 15U) {
/* There are only 16 data bits in bit maskable register. */
PinNumber -= (u8);
RegOffset = XGPIOPS_DATA_MSW_OFFSET;
} else {
RegOffset = XGPIOPS_DATA_LSW_OFFSET;
}
u32 *Gpio_DATA =( u32 *)(MY_GPIO_BASE_ADDR+
((u32)(Bank) * XGPIOPS_DATA_MASK_OFFSET) +
RegOffset);//数据寄存器,1亮 //根据用户方向值,填充方向寄存器值
u32 DirModeReg=XGpioPs_ReadReg(MY_GPIO_BASE_ADDR,
((u32)(Bank) * XGPIOPS_REG_MASK_OFFSET) +
XGPIOPS_OUTEN_OFFSET);
if (Direction!=(u32)) { /* Output Direction */
DirModeReg |= ((u32) << (u32)PinNumber);
} else { /* Input Direction */
DirModeReg &= ~ ((u32) << (u32)PinNumber);
}
*Gpio_DIR = DirModeReg;
//根据用户使能值,填充使能寄存器值
u32 OpEnableReg=XGpioPs_ReadReg(MY_GPIO_BASE_ADDR,
((u32)(Bank) * XGPIOPS_REG_MASK_OFFSET) +
XGPIOPS_OUTEN_OFFSET);
if (OpEnable != (u32)) { /* Enable Output Enable */
OpEnableReg |= ((u32) << (u32)PinNumber);
} else { /* Disable Output Enable */
OpEnableReg &= ~ ((u32) << (u32)PinNumber);
}
*Gpio_EN =OpEnableReg; //根据用户DATA值,填充数据寄存器值
/*
* Get the 32 bit value to be written to the Mask/Data register where
* the upper 16 bits is the mask and lower 16 bits is the data.
*/
DataVar &= (u32)0x01;
u32 Value = ~((u32) << (PinNumber + 16U)) & ((DataVar << PinNumber) | 0xFFFF0000U);
*Gpio_DATA =Value;//1亮 (fffe0001亮,fffe0000灭) //测试物理地址
printf("Gpio_DIR:%lx,value:%lx\n",Gpio_DIR,DirModeReg);
printf("Gpio_EN:%lx,value:%lx\n",Gpio_EN,OpEnableReg);
printf("Gpio_DATA:%lx,value:%lx\n",Gpio_DATA,Value); return ; }

结合UG585手册能够清晰的确定三个主要寄存器(控制、使能、数据)的基地址,长度(32位),该填充的内容,这里没有自己研究,仅仅将代码测试出来,

后面二者结合能够更好的明白ZYNQ EMIO对应的寄存器配置。

该代码仅仅分析了EMIO54-57,分别对应bank2的0-3

用户仅仅修改,以下区域即可,其他代码均是由这些“用户配置”完成

    //引脚EMIO54等价于bank=2,PinNum=0
//引脚EMIO57等价于bank=2,PinNum=3
u8 Bank=;
u8 PinNumber=; /**************对应管脚功能配置**********************/
u32 Direction=0X01;//设置MIO_54为输出
u32 OpEnable=0X01;//使能
u32 DataVar = 0X01;//1亮
  方向寄存器(地址) 方向寄存器(输出) 使能寄存器(地址) 使能寄存器(使能) s数据寄存器(地址) 数据寄存器(亮) 数据寄存器(灭)
Y21    e000a284 f e000a288 f e000a010 fffe0001 fffe0000
G2   e000a284 f e000a288 f e000a010 fffd0002 fffd0000
W21   e000a284 1f e000a288 1f e000a010 fffb0004 fffb0000
A17   e000a284 1f e000a288 1f e000a010 fff70008 fff70000

注意:这里的地址都是绝对地址,也就是最终的物理地址,便于我们做后序驱动开发。

#include <stdio.h>
#include "xgpiops.h"
#include "sleep.h" #define MY_GPIO_BASE_ADDR 0xE000A000
#define XGPIOPS_DATA_MASK_OFFSET 0x00000008U /* Data/Mask Registers offset */
#define XGPIOPS_REG_MASK_OFFSET 0x00000040U /* Registers offset */
#define XGPIOPS_DIRM_OFFSET 0x00000204U /* Direction Mode Register, RW */
#define XGPIOPS_OUTEN_OFFSET 0x00000208U /* Output Enable Register, RW */
#define XGPIOPS_DATA_LSW_OFFSET 0x00000000U /* Mask and Data Register LSW, WO */
#define XGPIOPS_DATA_MSW_OFFSET 0x00000004U /* Mask and Data Register MSW, WO */ int main()
{ //引脚EMIO54等价于bank=2,PinNum=0
//引脚EMIO57等价于bank=2,PinNum=3
u8 Bank=;
u8 PinNumber=; /**************对应管脚功能配置**********************/
u32 Direction=0X01;//设置MIO_54为输出
u32 OpEnable=0X01;//使能
u32 DataVar = 0X00;//1亮 //方向寄存器地址(由bank决定)
u32 *Gpio_DIR =( u32 *)(MY_GPIO_BASE_ADDR+
((u32)(Bank) * XGPIOPS_REG_MASK_OFFSET) +
XGPIOPS_DIRM_OFFSET); //方向寄存器,1为输出
//使能寄存器地址(由bank决定)
u32 *Gpio_EN =( u32 *)(MY_GPIO_BASE_ADDR+
((u32)(Bank) * XGPIOPS_REG_MASK_OFFSET) +
XGPIOPS_OUTEN_OFFSET);//使能寄存器,1使能
//数据寄存器地址(由bank和PinNumuber决定)
u32 RegOffset; //16位宽,后面要注意
if (PinNumber > 15U) {
/* There are only 16 data bits in bit maskable register. */
PinNumber -= (u8);
RegOffset = XGPIOPS_DATA_MSW_OFFSET;
} else {
RegOffset = XGPIOPS_DATA_LSW_OFFSET;
}
u32 *Gpio_DATA =( u32 *)(MY_GPIO_BASE_ADDR+
((u32)(Bank) * XGPIOPS_DATA_MASK_OFFSET) +
RegOffset);//数据寄存器,1亮 //根据用户方向值,填充方向寄存器值
u32 DirModeReg=XGpioPs_ReadReg(MY_GPIO_BASE_ADDR,
((u32)(Bank) * XGPIOPS_REG_MASK_OFFSET) +
XGPIOPS_OUTEN_OFFSET);
if (Direction!=(u32)) { /* Output Direction */
DirModeReg |= ((u32) << (u32)PinNumber);
} else { /* Input Direction */
DirModeReg &= ~ ((u32) << (u32)PinNumber);
}
*Gpio_DIR = DirModeReg;
//根据用户使能值,填充使能寄存器值
u32 OpEnableReg=XGpioPs_ReadReg(MY_GPIO_BASE_ADDR,
((u32)(Bank) * XGPIOPS_REG_MASK_OFFSET) +
XGPIOPS_OUTEN_OFFSET);
if (OpEnable != (u32)) { /* Enable Output Enable */
OpEnableReg |= ((u32) << (u32)PinNumber);
} else { /* Disable Output Enable */
OpEnableReg &= ~ ((u32) << (u32)PinNumber);
}
*Gpio_EN =OpEnableReg; //根据用户DATA值,填充数据寄存器值
/*
* Get the 32 bit value to be written to the Mask/Data register where
* the upper 16 bits is the mask and lower 16 bits is the data.
*/ DataVar &= (u32)0x01;
u32 Value = ~((u32) << (PinNumber + 16U)) & ((DataVar << PinNumber) | 0xFFFF0000U);
*Gpio_DATA =Value;//1亮 (fffe0001亮,fffe0000灭) //测试物理地址
printf("Gpio_DIR:%lx,value:%lx\n",Gpio_DIR,DirModeReg);
printf("Gpio_EN:%lx,value:%lx\n",Gpio_EN,OpEnableReg);
printf("Gpio_DATA:%lx,value:%lx\n",Gpio_DATA,Value); return ; }

最新文章

  1. 架构设计:负载均衡层设计方案(3)——Nginx进阶
  2. Tcl internal variables
  3. Jquery和其他库($的好处)
  4. HBase中的压缩算法比较 GZIP、LZO、Zippy、Snappy [转]
  5. Cutterman 切图神器,虽然还没用过,先 mark 一下好了
  6. 14.Android之Layout布局学习
  7. ###Git使用问题
  8. Oracle inner join、left join、right join 、+左边或者右边的区别
  9. iOS Foundation框架 -1.常用结构体的用法和输出
  10. HDU 5608 function [杜教筛]
  11. 事件/委托机制(event/delegate)(Unity3D开发之十七)
  12. 截止2017年,最新的全国行政区划代码数据源(xml)
  13. python note 14 其他函数及递归应用
  14. UE4:四种加载资源的方式
  15. 一步一步配置 Dell OME 监控 Dell 服务器硬件报警
  16. Scala学习笔记(二):object、伴生对象和基本类
  17. oel5.5安装mysql数据库初始化报错解决办法
  18. hadoop伪分布模式安装
  19. BZOJ4241:历史研究(回滚莫队)
  20. Mysql5.7.21 Navicat触发器创建

热门文章

  1. CSS3实现图片渐入效果
  2. dcom初步窥探一
  3. 进阶系列(9)——linq
  4. [图算法] 1030. Travel Plan (30)
  5. CoordinatdBolt原理分析
  6. 【C】多线程编程笔记
  7. 利用vs10和opencv识别图片类型身份证的号码
  8. postman md5加密 然后传给下一个接口作为参数调用
  9. 【前端学习笔记04】JavaScript数据通信Ajax方法封装
  10. Web前端面试宝典(最新)