link

题意:求出\(\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\),对998244353取模

多组数据,\(T\le 10^4,n,m\le 10^5\)。

前置知识:\(\varphi(ij)=\frac{\varphi(i)\varphi(j)\gcd(i,j)}{\varphi(\gcd(i,j))}\)

证明:我是口胡呢还是好好证呢还是口胡吧

按照欧拉函数的计算式展开,会发现,左边是\(ij\prod_{p|i \mathrm{\color{green}{or}}p|j}\frac{p-1}p\)

右边是\(\frac{i\prod_{p|i}\frac{p-1}pj\prod_{p|j}\frac{p-1}p\gcd(i,j)}{\gcd(i,j)\prod_{p|i\mathrm{\color{green}{and}}p|j}\frac{p-1}p}\)

显然,根据容斥原理,两边是相等的

然后推式子

\(\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\)

\(=\sum_{i=1}^n\sum_{j=1}^m\frac{\varphi(i)\varphi(j)\gcd(i,j)}{\varphi(\gcd(ij))}\)

\(=\sum_{p=1}^n\frac p{\varphi(p)}\sum_{i=1}^n\sum_{j=1}^m\varphi(i)\varphi(j)[\gcd(i,j)=p]\)

\(=\sum_{p=1}^n\frac p{\varphi(p)}\sum_{i=1}^{n/p}\sum_{j=1}^{m/p}\varphi(ip)\varphi(jp)[\gcd(i,j)=1]\)

\(=\sum_{p=1}^n\frac p{\varphi(p)}\sum_{i=1}^{n/p}\sum_{j=1}^{m/p}\varphi(ip)\varphi(jp)\sum_{d|i,d|j}\mu(d)\)

\(=\sum_{p=1}^n\frac p{\varphi(p)}\sum_{d=1}^n\mu(d)\sum_{i=1}^{n/dp}\sum_{j=1}^{m/dp}\varphi(idp)\varphi(jdp)\)

\(=\sum_{q=1}^n\sum_{p|q}\frac{p\mu(\frac qp)}{\varphi(p)}\sum_{i=1}^{n/q}\sum_{j=1}^{m/q}\varphi(iq)\varphi(jq)\)

\(=\sum_{q=1}^n\left(\sum_{p|q}\frac{p\mu(\frac qp)}{\varphi(p)}\right)\left(\sum_{i=1}^{n/q}\varphi(iq)\right)\left(\sum_{i=1}^{m/q}\varphi(iq)\right)\)

前面这一部分好处理--\(O(n\log n)\)枚举倍数。后面?按照套路?数论分块?怎么分????

观察了你谷题解后,终于懂了

设\(sum(q)=\sum_{p|q}\frac{p\mu(\frac qp)}{\varphi(p)}\),显然可以在\(O(n\log n)\)的时间复杂度内处理出来。

设\(g(x,y)=\sum_{i=1}^x\varphi(iy)\),显然有递推式\(g(x,y)=g(x-1,y)+\varphi(xy)\)。

由于\(xy<=n\),对于每个\(x\),有\(\frac nx\)的数值,我们可以通过动态申请内存,在\(O(n\log n)\)的时间复杂度和空间复杂度内求出\(g\)数组。

设\(T(n,a,b)=\sum_{q=1}^n\left(\sum_{p|q}\frac{p\mu(\frac qp)}{\varphi(p)}\right)\left(\sum_{i=1}^{a}\varphi(iq)\right)\left(\sum_{i=1}^{b}\varphi(iq)\right)=\sum_{q=1}^nsum(q)g(a,q)g(b,q)\)

显然T的递推式为\(T(n,a,b)=T(n-1,a,b)+sum(n)g(a,n)g(b,n)\)

根据数论分块那套理论,对于一个\(n/q\)和\(m/q\)相同的\(q\)的区间,当\(n/q=a,m/q=b\)时,这一区间的\(ans=T(r,a,b)-T(l-1,a,b)\),r和l是这一区间内的最大值和最小值

我们考虑预处理\(n*B*B\)范围的答案,B是我们钦定的一个数字,T数组开的空间复杂度为\(O(nB^2)\)(实际上由于\(a*n,b*n\le 10^5\)的限制,应该开不到\(O(nB^2)\)。

对于每次询问,我们只能在\(n/q\le B\)时候进行数论分块操作通过\(T\)数组计算答案,复杂度根据数论分块那套理论为\(O(\sqrt n)\)。

对于\(n/q>B\)的部分,有\(q<n/B\),暴力枚举\(q\),通过\(g\)数组计算答案,这一部分单次计算的复杂度为\(O(n/B)\)。

总复杂度为\(O(n\log n+nB^2+T(\sqrt n+n/B))\)。实测,B开到50左右跑的快一点,且内存占用超小。

下面是乱七八糟的代码= =

注意讲文明,new来的内存要主动回收垃圾

注意取模(这题如果写的复杂度没错的话不卡常,开#define int long long也是没问题的

#include <cstdio>
#include <functional>
using namespace std; const int p = 998244353;
const int b = 50;
bool vis[100010];
int prime[100010], tot, fuck = 100000;
int mu[100010], phi[100010], invphi[100010];
int sum[100010];
int *g[100010], *t[100][100]; //注意这里t数组下标是[2][3][1] int qpow(int x, int y)
{
int res = 1;
for (x %= p; y > 0; x = x * (long long)x % p, y >>= 1) if (y & 1) res = res * (long long)x % p;
return res;
} int main()
{
//线性筛phi,mu,预处理前面的部分
phi[1] = mu[1] = invphi[1] = 1;
for (int i = 2; i <= fuck; i++)
{
if (vis[i] == false) prime[++tot] = i, phi[i] = i + (mu[i] = -1);
for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0) { phi[i * prime[j]] = phi[i] * prime[j]; break; }
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
mu[i * prime[j]] = -mu[i];
}
invphi[i] = qpow(phi[i], p - 2);
if (phi[i] * (long long)invphi[i] % p != 1) { return -233; printf("cnm\n"); }
}
for (int pp = 1; pp <= fuck; pp++)
for (int q = pp, d = 1; q <= fuck; q += pp, d++)
sum[q] = (sum[q] + pp * (long long)invphi[pp] % p * mu[d]) % p, sum[q] += (sum[q] < 0 ? p : 0); //处理g数组
for (int i = 1; i <= fuck; i++)
{
g[i] = new int[(fuck / i) + 1], g[i][0] = 0;
for (int j = 1, sb = fuck / i; j <= sb; j++)
g[i][j] = (g[i][j - 1] + phi[i * j]) % p;
} //处理t数组 注意有第一维<=第二维,因为下面我们强制n<=m了
for (int j = 1; j <= b; j++)
for (int k = j; k <= b; k++)
{
int len = fuck / max(j, k);
t[j][k] = new int[len + 1], t[j][k][0] = 0;
for (int i = 1; i <= len; i++)
t[j][k][i] = (t[j][k][i - 1] + sum[i] * (long long)g[i][j] % p * g[i][k] % p) % p;
} //处理询问
int tat;
scanf("%d", &tat);
while (tat --> 0)
{
int n, m, res = 0;
scanf("%d%d", &n, &m);
if (n > m) swap(n, m);
//对于n/q>b的部分,暴力,通过g数组和sum数组计算计算
for (int i = 1, sb = m / b; i <= sb; i++)
res = (res + sum[i] * (long long)g[i][n / i] % p * g[i][m / i] % p) % p;
//对于n/q<b的部分,数论分块,通过b数组计算
for (int i = m / b + 1, j; i <= n; i = j + 1)
{
j = min(n / (n / i), m / (m / i));
res = (res + t[n / i][m / i][j] - t[n / i][m / i][i - 1]) % p, res += (res < 0 ? p : 0);
}
printf("%d\n", res);
} //垃圾回收
for (int i = 1; i <= fuck; i++)
delete []g[i], g[i] = 0;
for (int i = 1; i <= b; i++)
for (int j = i; j <= b; j++)
delete[] t[i][j], t[i][j] = 0;
return 0;
}

最新文章

  1. 揭开Java IO流中的flush()的神秘面纱
  2. 使用curl 下载HTML
  3. 求解PDE的多重网格法(MG)
  4. 免费真机调试 -- Xcode7以上版本
  5. centos 6.5 minimal 安装及vm-tools安装
  6. ylbtech-数据库设计与优化-对作为复选框/单选列表的集合表的设计
  7. 【HDU1856】More is better(并查集基础题)
  8. UIScreen类
  9. 仿Iconfont-阿里巴巴矢量图标库 搜索动画
  10. Linux select I/O 复用
  11. Docker学习笔记1 -- 刚入手docker时的几个命令
  12. Linux添加目录到环境变量以及添加sublime到环境变量
  13. Internet Explorer 11:不要再叫我IE
  14. LeetCode 292 Nim Game 解题报告
  15. ES代替DB建模后的维护流程架构
  16. Java - Spring AOP 拦截器的基本实现
  17. 分别编写两个类Point2D,Point3D来表示二维空间和三维空间的点,使之满足下列要求:
  18. Wireshark命令行工具tshark详解(含例子)-01
  19. restful知识点之六rest-framework组件流程图
  20. spring异常被吞的一种情形

热门文章

  1. 配置docker中免密码SSH
  2. rails自定义出错页面
  3. python使用pyodbc连接sql server 2008
  4. #测试两种不同的SVM,rbf的核真是太棒了(一种会拐弯的边界)
  5. lineNumber: 8; columnNumber: 128; cvc-elt.1: 找不到元素 &#39;beans&#39; 的声明
  6. gridcontrol 添加行号
  7. 修改LINUX ROOT密码
  8. LINUX 使用DBCA创建ORACLE数据库
  9. PCL—点云滤波(初步处理)
  10. linux设备驱动第四篇:驱动调试方法