ST算法------是用来求解给定区间RMQ的最值,本文以最小值为例

ST算法分为两部分

  • 离线预处理(nlogn):运用DP思想,用于求解区间最值,并保存到一个二维数组中。

  • 在线查询 (O(1)):对给定区间进行分割,借助该二维数组求最值

离线预处理

该二维数组是什么?

  • 设该二维数组为dp[n][n], 则dp[i][j]表示以i为起点,以2^j为区间长度的区间最值即表示数组[i, i+2^j-1]区间的最值。
  • 给出一数组A[0~5] = {5,4,6,10,1,12},则区间[2,5]之间的最值为1。
  • 比如,dp[0][2]表示区间[0,3]的最小值,即等于4,dp[2][2]表示区间[2,5]的最小值,即等于1。

如何求一个dp[i][j]的最值?

  • 在求解dp[i][j]时,将它表示的数组区间分成两部分即将[i,i+2^j-1]分成两份,每份区间长度为2^(j-1)。之后在分别求解这两个区间dp[i][j-1]和dp[i+2^(j-1)][j-1]的最值,然后结合这两个区间求整个区间的最值。(特殊情况:当j=0时,区间长度为1,此时区间中只有一个元素,此时dp[i][0]等于每一个元素的值)。
  • 举例:要求解dp[1][2]的最小值,即求解区间[1, 4]={4,6,10,1}的最小值,将区间分为等长两部分[1,2],[3,4],求这两个区间的最小值,此时这两个区间最小值又对应着dp[1][1],dp[3][1]的最小值。
  • 状态转移方程是 dp[i][j] = min(dp[i][j - 1],dp[i + 2^(j - 1)][j - 1])
  • 初始状态为:dp[i][0] = A[i]。
  • 在根据状态转移方程递推时,是对每一元素,先求区间长度为1的区间最值,之后再求区间长度为2的区间最值,之后再求区间长度为4的区间最值....,最后,对每一个元素,在求解区间长度为log2^n的区间最值后,算法结束,其中n表示元素个数。即:先求dp[0][1],dp[1][1],dp[2][1],dp[3][1],,,dp[n][1],再求.dp[0][2],dp[1][2],dp[2][2],dp[3][2],,,dp[m][2],... 。

在线查询

  • 这里我们是已知待查询的区间[x,y],求解其最值。
  • 在预处理期间,每一个状态对应的区间长度都为2^i。由于给出的待查询区间长度不一定恰好为2^i,因此我们应对待查询的区间进行处理。

    这里我们把待查询的区间分成两个小区间,这两个小区间满足两个条件

  1. 这两个小区间要能覆盖整个区间
  2. 为了利用预处理的结果,要求小区间长度相等且都为2^i。注意两个小区间可能重叠。
  • 如:待查询的区间为[3,11],先尽量等分两个区间,则先设置为[3,7]和[8,11]。之后再扩大这两个区间,让其长度都等于为2^i。刚划分的两个区间长度分别为5和4,之后继续增加区间长度,直到其成为2^i。此时满足两个条件的最小区间长度为8,

  • 此时i = 3在程序计算求解区间长度时,并没有那么麻烦,我们可以直接得到i,即等于直接对区间长度取以2为底的对数。这里,对于区间[3,11],其分解的区          间长度为int(log(11 - 3 + 1)) = 3,这里log是以2为底的。

  • 然后就可以将区间 [x, y]划分成两个小区间[x,x+2^i-1],[y-2^i+1,y]即对应着dp[x][i],dp[y-2^i+1][i]

最后上代码!

#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1e5+;
int dpmin[maxn][],dpmax[maxn][];
int a[maxn];
void initrmq(int n)
{
int i, j;
for(i=; i<=n; i++)
{
dpmin[i][]=a[i];
dpmax[i][]=a[i];
}
for(j=; <<j<=n; j++)
for(i=; i+(<<j)<=n+; i++)
{
dpmin[i][j]=min(dpmin[i][j-], dpmin[i+(<<(j-))][j-]);
dpmax[i][j]=max(dpmax[i][j-], dpmax[i+(<<(j-))][j-]);
}
}
int queryrmq(int l, int r, int op) // 传入op=0,表示最小值,op=1,表示最大值
{
int k=log2(r-l+);
if(op==)
return min(dpmin[l][k], dpmin[r-(<<k)+][k]);
else
return max(dpmax[l][k], dpmax[r-(<<k)+][k]);
}
int main()
{
int i, m, q, n;
cin>>n>>q;
for(i=; i<=n; i++)
cin>>a[i];
initrmq(n);
while(q--)
{
int l, r, op;
cin>>l>>r>>op;
cout<<queryrmq(l,r,op)<<endl;
}
}

最新文章

  1. CYQ.Data V5 从入门到放弃ORM系列:教程 - Log、SysLogs两个日志类使用
  2. Android标题栏最右边添加按钮
  3. mysql创建用户及授权相关命令
  4. 热烈庆祝华清远见成功自主研发Farsight TV 智能机顶盒
  5. [js开源组件开发]图片懒加载lazyload
  6. c++ 普通高精除高精
  7. C实现面向对象封装、继承、多态
  8. Java正则表达式之语法规则
  9. Windows7 64位系统下无法安装网络打印机的解决方法
  10. Monitor vs WaitHandle
  11. Struts1和Struts2的区别和对比(完整版)
  12. IIS中启用gzip压缩(网站优化)
  13. 【转】在CentOS上安装tomcat
  14. 一个很好玩的命令:stty
  15. SQLServer树形数据结构的数据进行数据统计
  16. 在线教育平台搭建 预览和models
  17. Educational Codeforces Round 62 (Rated for Div. 2)C
  18. LFYZ-OJ ID: 1016 输油管道问题
  19. deeplearn.js
  20. java 栈 最大深度

热门文章

  1. 搭建自己的docker仓库
  2. shell常用监控脚本
  3. ELK 使用4-Kafka + zookpeer
  4. 函数防抖 debounce
  5. spring cloud (四、服务消费者demo_consumer)
  6. P1373 小a和uim之大逃离 二维dp
  7. 028 IDEA中下载与上传程序
  8. elementui command绑定变量对象方法
  9. 做项目单个功能的时候要理解需求和sql语句。
  10. Intellij IDEA 解决 Maven 依赖下载慢的问题