前提:"单一职责"模式

在软件组件的设计中,如果责任划分的不清晰,使用继承,得到的结果往往是随着需求的变化,子类急剧膨胀,同时充斥着重复代码,这时候的关键是划清责任

典型模式(表现最为突出)

装饰模式Decorator
桥接模式Bridge

一:装饰模式

(一)概念

装饰模式又叫做包装模式。通过一种对客户端透明的方式来扩展对象的功能,是继承关系的一个替换方案。
装饰模式就是把要添加的附加功能分别放在单独的类中,并让这个类包含它要装饰的对象,当需要执行时,客户端就可以有选择的,顺序的使用装饰功能包装对象

(二)动机

在某些情况下我们可能会“过度的使用继承来扩展对象的功能”,由于继承为类型引入的静态特质,使得这种扩展方式缺乏灵活性;
并且随着子类的增多(扩展功能的增多),各种子类的组合(扩展功能的组合)会导致更多的子类膨胀。
即我们需要找到一种方式,实现功能可通过非继承方式扩展,但是接口不发生变化的类。
如何使“对象功能的扩展”能够根据需要来动态地实现?同时避免“扩展功能的增多”带来的子类膨胀问题?
从而使得任何“功能扩展变化”所导致的影响将为最低?

(三)原代码讲解(流操作)

文件流,内存流,网络流,有对流进行加密,缓存等操作
//业务操作
class Stream{  //公共基类,含有共有方法
public:
virtual char Read(int number)=;
virtual void Seek(int position)=;
virtual void Write(char data)=; virtual ~Stream(){}
}; //主体类:文件流,网络流,内存流三个类
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
} }; class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
} }; class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
} }; //扩展操作,对各个流进行操作,加密
class CryptoFileStream :public FileStream{
public:
virtual char Read(int number){ //额外的加密操作...
FileStream::Read(number);//读文件流  静态特质,定死了,永远都是文件操作 }
virtual void Seek(int position){
//额外的加密操作...
FileStream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
FileStream::Write(data);//写文件流
//额外的加密操作...
}
}; class CryptoNetworkStream : :public NetworkStream{
public:
virtual char Read(int number){ //额外的加密操作...
NetworkStream::Read(number);//读网络流
}
virtual void Seek(int position){
//额外的加密操作...
NetworkStream::Seek(position);//定位网络流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
NetworkStream::Write(data);//写网络流
//额外的加密操作...
}
}; class CryptoMemoryStream : public MemoryStream{
public:
virtual char Read(int number){ //额外的加密操作...
MemoryStream::Read(number);//读内存流
}
virtual void Seek(int position){
//额外的加密操作...
MemoryStream::Seek(position);//定位内存流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
MemoryStream::Write(data);//写内存流
//额外的加密操作...
}
};

//扩展操作,对各个流进行操作,缓存操作
class BufferedFileStream : public FileStream{
//...
}; class BufferedNetworkStream : public NetworkStream{
//...
}; class BufferedMemoryStream : public MemoryStream{
//...
} //扩展操作,对各个流进行操作,加密和缓存组合操作,这里只写了一个,实际上有多种组合
class CryptoBufferedFileStream :public FileStream{
public:
virtual char Read(int number){ //额外的加密操作...
//额外的缓冲操作...
FileStream::Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Seek(position);//定位文件流
//额外的加密操作...
//额外的缓冲操作...
}
virtual void Write(byte data){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Write(data);//写文件流
//额外的加密操作...
//额外的缓冲操作...
}
}; void Process(){ //编译时装配
CryptoFileStream *fs1 = new CryptoFileStream(); BufferedFileStream *fs2 = new BufferedFileStream(); CryptoBufferedFileStream *fs3 =new CryptoBufferedFileStream(); }

出现的问题:

需要的类的个数是:
1+n+n*(m+m-1+...+2+1)
其中n是我们流的个数,m是我们的操作类型个数。
我们上面的n=,m=2所以需要的类是13个

问题的原因

除了其中的具体操作,例如:文件读取,网络读取等不同,我们发现所有的加密和缓存操作都是一样的方法,出现大量代码冗余,

(四)改进版本一(组合代替继承

//扩展操作
class CryptoFileStream{
FileStream* stream;
public:
virtual char Read(int number){ //额外的加密操作...
stream->Read(number);//读文件流 }
virtual void Seek(int position){
//额外的加密操作...
stream->Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream->Write(data);//写文件流
//额外的加密操作...
}
}; class CryptoNetworkStream{
NetworkStream* stream;
public:
virtual char Read(int number){ //额外的加密操作...
stream->Read(number);//读网络流
}
virtual void Seek(int position){
//额外的加密操作...
stream->Seek(position);//定位网络流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream->Write(data);//写网络流
//额外的加密操作...
}
}; class CryptoMemoryStream{
NetworkStream* stream;
public:
virtual char Read(int number){ //额外的加密操作...
stream->Read(number);//读内存流  
}
virtual void Seek(int position){
//额外的加密操作...
stream->Seek(position);//定位内存流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream->Write(data);//写内存流
//额外的加密操作...
}
};
当一个变量的声明类型都是某个类的子类的时候,我们就该将他声明为某个类(基类),由于多态,我们可以使得他在未来(运行时)成为子类
//扩展操作
class CryptoFileStream{
Stream* stream;  //使用基类,消除了编译时依赖
public:
virtual char Read(int number){ //额外的加密操作...
stream->Read(number);//读文件流 }
virtual void Seek(int position){
//额外的加密操作...
stream->Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream->Write(data);//写文件流
//额外的加密操作...
}
}; class CryptoNetworkStream{
Stream* stream;
public:
virtual char Read(int number){ //额外的加密操作...
stream->Read(number);//读网络流
}
virtual void Seek(int position){
//额外的加密操作...
stream->Seek(position);//定位网络流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream->Write(data);//写网络流
//额外的加密操作...
}
}; class CryptoMemoryStream{
Stream* stream;
public:
virtual char Read(int number){ //额外的加密操作...
stream->Read(number);//读内存流
}
virtual void Seek(int position){
//额外的加密操作...
stream->Seek(position);//定位内存流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream->Write(data);//写内存流
//额外的加密操作...
}
};
我们发现这3个类一样,除了类名之外都相同,所以我们可以进行合并,消除重复性
//扩展操作
class CryptoFileStream{
Stream* stream;
public:
virtual char Read(int number){ //额外的加密操作...
stream->Read(number);//读文件流 }
virtual void Seek(int position){
//额外的加密操作...
stream->Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream->Write(data);//写文件流
//额外的加密操作...
}
}; class BufferedFileStream{  //所有相同操作都将去重,只保留一个
//...
};
同时发现一个问题,我们从继承转组合以后的虚函数哪来的?我们还是要遵循留的规范,即基类为我们设置的接口虚函数。我们还是需要进行继承,完善接口规范,不过只需要继承流的基类即可
//扩展操作
class CryptoStream :public Stream{
Stream* stream;
public:
virtual char Read(int number){ //额外的加密操作...
stream->Read(number);//读文件流 }
virtual void Seek(int position){
//额外的加密操作...
stream->Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream->Write(data);//写文件流
//额外的加密操作...
}
}; class BufferedStream : :public Stream{
//...
};
下面是全部修改代码
//业务操作
class Stream{ public:
virtual char Read(int number)=;
virtual void Seek(int position)=;
virtual void Write(char data)=; virtual ~Stream(){}
}; //主体类
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
} }; class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
} }; class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
} }; //扩展操作
class CryptoStream: public Stream { Stream* stream;//... public:
CryptoStream(Stream* stm):stream(stm){ } virtual char Read(int number){ //额外的加密操作...
stream->Read(number);//读文件流  //动态特质:由组合实现
}
virtual void Seek(int position){
//额外的加密操作...
stream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream::Write(data);//写文件流
//额外的加密操作...
}
}; class BufferedStream : public Stream{ Stream* stream;//... public:
BufferedStream(Stream* stm):stream(stm){ }
//...
}; void Process(){ //运行时装配
FileStream* s1=new FileStream();
CryptoStream* s2=new CryptoStream(s1); BufferedStream* s3=new BufferedStream(s1);
//上面对s2加密了,我们再进行s2的缓存,实现了既加密又缓存
BufferedStream* s4=new BufferedStream(s2);
}

运行时装配:

我们编译时不存在文件加密,网络加密,文件缓存,文件加密缓存等操作,我们在运行时对其进行组合装配起来满足我们的需求

另外注意:

根据重构中所说:当我们类中含有重复字段和方法,我们应该将其提到前面基类中去,这里我们若是将Stream* stream提到Stream基类中去,会发现在主体类中会包含这个不需要的字段,所以这个时候我们应该设计一个中间基类。这时就引用出来了装饰模式

(五)改进版本二(使用装饰模式<中间基类>)

//扩展操作
//中间类
class DecoratorStream: public Stream{
protected:
Stream* stream;
public:
DecoratorStream(Stream* stm):stream(stm){}
};
class CryptoStream: public DecoratorStream {
public:
CryptoStream(Stream* stm):DecoratorStream(stm){ } virtual char Read(int number){ //额外的加密操作...
stream->Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
stream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream::Write(data);//写文件流
//额外的加密操作...
}
}; class BufferedStream : public DecoratorStream{
public:
BufferedStream(Stream* stm):DecoratorStream(stm){ }
//...
};

最终规模是:+n++m

全部代码

//业务操作
class Stream{ public:
virtual char Read(int number)=;
virtual void Seek(int position)=;
virtual void Write(char data)=; virtual ~Stream(){}
}; //主体类
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
} }; class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
} }; class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
} }; //扩展操作 DecoratorStream: public Stream{
protected:
Stream* stream;//...核心 DecoratorStream(Stream * stm):stream(stm){ } }; class CryptoStream: public DecoratorStream { public:
CryptoStream(Stream* stm):DecoratorStream(stm){ } virtual char Read(int number){ //额外的加密操作...
stream->Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
stream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream::Write(data);//写文件流
//额外的加密操作...
}
}; class BufferedStream : public DecoratorStream{ public:
BufferedStream(Stream* stm):DecoratorStream(stm){ }
//...
}; void Process(){ //运行时装配
FileStream* s1=new FileStream(); CryptoStream* s2=new CryptoStream(s1); BufferedStream* s3=new BufferedStream(s1); BufferedStream* s4=new BufferedStream(s2);
}
以组合的方式来支持未来多态的变化

(六)模式定义

动态(组合)地给一个对象增加一些额外的职责。就增加功能而言,Decorator模式比生成子类(继承)更为灵活(消除重复代码 & 减少子类个数)。
                     ——《设计模式》GoF

(七)类图(结构)

(八)要点总结

1.通过采用组合而非继承的手法, Decorator模式实现了在运行时 动态扩展对象功能的能力,而且可以根据需要扩展多个功能。避免了使用继承带来的“灵活性差”和“多子类衍生问题”。

2.Decorator类在接口上表现为is-a Component的继承关系,即Decorator类继承了Component类所具有的接口。但在实现上又 表现为has-a Component的组合关系,即Decorator类又使用了 另外一个Component类。

DecoratorStream: public Stream{
protected:
Stream* stream;//... DecoratorStream(Stream * stm):stream(stm){ } };
若是程序中一个类的父类和他的字段类是同一个类的,那么他有极大的几率是Decorator模式。因为一般继承就不组合,组合就不继承
而我们这里的继承是为了接口的规范,组合是为了将来支持具体实现类

3.Decorator模式的目的并非解决“多子类衍生的多继承”问题, Decorator模式应用的要点在于解决“主体类在多个方向上的扩展 功能”——是为“装饰”的含义。

主体操作和扩展操作应该分开分之继承 

(九)案例实现(装饰车)

//业务规范
class Car
{
public:
virtual void show() = ;
virtual ~Car(){}
};
//主体类
class RunCar :public Car
{
public:
virtual void show()
{
cout << "running" << endl;
}
}; class SwimCar :public Car
{
public:
virtual void show()
{
cout << "swimming" << endl;
}
}; class FlyCar :public Car
{
public:
virtual void show()
{
cout << "flying" << endl;
}
};
//装饰中间类
class DecoratorCar : public Car
{
protected:
Car * car;
public:
DecoratorCar(Car* c) :car(c){}
};
//扩展操作类
class EquipEngine :public DecoratorCar
{
public:
EquipEngine(Car* c) :DecoratorCar(c)
{
} virtual void show()
{
cout << "equip engine can run fast" << endl;
car->show();
}
}; class EquipWing :public DecoratorCar
{
public:
EquipWing(Car* c) :DecoratorCar(c)
{
} virtual void show()
{
cout << "equip wing can fly" << endl;
car->show();
}
}; class EquipPaddle :public DecoratorCar
{
public:
EquipPaddle(Car* c) :DecoratorCar(c)
{
} virtual void show()
{
cout << "equip paddle can swing" << endl;
car->show();
}
};
int main()
{
SwimCar* car = new SwimCar();
EquipPaddle *scar = new EquipPaddle(car);
EquipEngine *ecar = new EquipEngine(scar);
EquipWing *wcar = new EquipWing(ecar); wcar->show();
system("pause");
return ;
}

最新文章

  1. sql查询重复数据
  2. ssh 登录
  3. NSNotification --关于通知
  4. paramter的添加
  5. 10与元素亲密接触:盒元素(the box model)
  6. 单线程vs多线程
  7. javascript方法 call()和apply()的用法
  8. oracle 数组类型
  9. ExtJs之Ext.query
  10. shell bash判断文件或文件夹是否存在
  11. windows编程socket问题
  12. jquery 中 fn.apply(this, arguments)是什么函数?有什么作用?能举个例子吗
  13. sklearn数据预处理-scale
  14. P1605 迷宫 dfs回溯法
  15. js实现网页全屏切换(平滑过渡),鼠标滚动切换
  16. kepware http接口 c语言(libcrul)开发
  17. Orchard模块开发全接触1:起步
  18. L1-050 倒数第N个字符串
  19. java多线程实例
  20. win10下vs2015配置Opencv3.1.0过程详解(转)

热门文章

  1. python学习笔记七——字典
  2. HTML DOM 節點
  3. Highcharts之饼图
  4. Lodop不要把客户端的打印机共享到服务器上 再在客户端打印
  5. 为Bootstrap模态对话框添加拖拽移动功能
  6. 认真学习Linux系统让你真的有收获
  7. Ubuntu16.04 ERROR 1698 (28000): Access denied for user &#39;root&#39;@&#39;localhost&#39; 解决流程
  8. 【Linux】memcache和memcached的自动安装
  9. 概率dp总结 正在更新
  10. LightOJ - 1265 (概率)