请阅读上篇文章《并发编程实战: POSIX 使用互斥量和条件变量实现生产者/消费者问题》。当然不阅读亦不影响本篇文章的阅读

Boost的互斥量,条件变量做了很好的封装,因此比“原生的”POSIX mutex,condition variables好用。然后我们会通过分析boost相关源码看一下boost linux是如何对pthread_mutex_t和pthread_cond_t进行的封装。

首先看一下condition_variable_any的具体实现,代码路径:/boost/thread/pthread/condition_variable.hpp

class condition_variable_any
{
pthread_mutex_t internal_mutex;
pthread_cond_t cond; condition_variable_any(condition_variable_any&);
condition_variable_any& operator=(condition_variable_any&); public:
condition_variable_any()
{
int const res=pthread_mutex_init(&internal_mutex,NULL);
if(res)
{
boost::throw_exception(thread_resource_error());
}
int const res2=pthread_cond_init(&cond,NULL);
if(res2)
{
BOOST_VERIFY(!pthread_mutex_destroy(&internal_mutex));
boost::throw_exception(thread_resource_error());
}
}
~condition_variable_any()
{
BOOST_VERIFY(!pthread_mutex_destroy(&internal_mutex));
BOOST_VERIFY(!pthread_cond_destroy(&cond));
}

condition_variable_any的构造函数是对于内部使用的mutex和cond的初始化,对应的,析构函数则是这些资源的回收。

BOOST_VERIFY的实现:

#undef BOOST_VERIFY
#if defined(BOOST_DISABLE_ASSERTS) || ( !defined(BOOST_ENABLE_ASSERT_HANDLER) && defined(NDEBUG) )
// 在任何情况下,expr一定会被求值。
#define BOOST_VERIFY(expr) ((void)(expr))
#else
#define BOOST_VERIFY(expr) BOOST_ASSERT(expr)
#endif

因此不同于assert在Release版的被优化掉不同,我们可以放心的使用BOOST_VERITY,因此它的表达式肯定会被求值,而不用担心assert的side effect。
接下来看一下condition_variable_any的核心实现:wait

   template<typename lock_type>
void wait(lock_type& m)
{
int res=0;
{
thread_cv_detail::lock_on_exit<lock_type> guard;
detail::interruption_checker check_for_interruption(&internal_mutex,&cond);
guard.activate(m);
res=pthread_cond_wait(&cond,&internal_mutex);
this_thread::interruption_point();
}
if(res)
{
boost::throw_exception(condition_error());
}
}

首先看一下lock_on_exit:

namespace thread_cv_detail
{
template<typename MutexType>
struct lock_on_exit
{
MutexType* m; lock_on_exit():
m(0)
{} void activate(MutexType& m_)
{
m_.unlock();
m=&m_;
}
~lock_on_exit()
{
if(m)
{
m->lock();
}
}
};
}

代码很简单,实现了在调用activate时将传入的lock解锁,在该变量生命期结束时将guard的lock加锁。

接下来的detail::interruption_checker check_for_interruption(&internal_mutex,&cond);是什么意思呢?From /boost/thread/pthread/thread_data.hpp

class interruption_checker
{
thread_data_base* const thread_info;
pthread_mutex_t* m;
bool set; void check_for_interruption()
{
if(thread_info->interrupt_requested)
{
thread_info->interrupt_requested=false;
throw thread_interrupted();
}
} void operator=(interruption_checker&);
public:
explicit interruption_checker(pthread_mutex_t* cond_mutex,pthread_cond_t* cond):
thread_info(detail::get_current_thread_data()),m(cond_mutex),
set(thread_info && thread_info->interrupt_enabled)
{
if(set)
{
lock_guard<mutex> guard(thread_info->data_mutex);
check_for_interruption();
thread_info->cond_mutex=cond_mutex;
thread_info->current_cond=cond;
BOOST_VERIFY(!pthread_mutex_lock(m));
}
else
{
BOOST_VERIFY(!pthread_mutex_lock(m));
}
}
~interruption_checker()
{
if(set)
{
BOOST_VERIFY(!pthread_mutex_unlock(m));
lock_guard<mutex> guard(thread_info->data_mutex);
thread_info->cond_mutex=NULL;
thread_info->current_cond=NULL;
}
else
{
BOOST_VERIFY(!pthread_mutex_unlock(m));
}
}

代码面前,毫无隐藏。那句话就是此时如果有interrupt,那么就interrupt吧。否则,lock传入的mutex,也是为了res=pthread_cond_wait(&cond,&internal_mutex);做准备。

关于线程的中断点,可以移步《【Boost】boost库中thread多线程详解5——谈谈线程中断》。

对于boost::mutex,大家可以使用同样的方法去解读boost的实现,相对于condition variable,mutex的实现更加直观。代码路径:/boost/thread/pthread/mutex.hpp。

namespace boost
{
class mutex
{
private:
mutex(mutex const&);
mutex& operator=(mutex const&);
pthread_mutex_t m;
public:
mutex()
{
int const res=pthread_mutex_init(&m,NULL);
if(res)
{
boost::throw_exception(thread_resource_error());
}
}
~mutex()
{
BOOST_VERIFY(!pthread_mutex_destroy(&m));
} void lock()
{
int const res=pthread_mutex_lock(&m);
if(res)
{
boost::throw_exception(lock_error(res));
}
} void unlock()
{
BOOST_VERIFY(!pthread_mutex_unlock(&m));
} bool try_lock()
{
int const res=pthread_mutex_trylock(&m);
if(res && (res!=EBUSY))
{
boost::throw_exception(lock_error(res));
} return !res;
} typedef pthread_mutex_t* native_handle_type;
native_handle_type native_handle()
{
return &m;
} typedef unique_lock<mutex> scoped_lock;
typedef detail::try_lock_wrapper<mutex> scoped_try_lock;
};
}

boost对于pthread_mutex_t和pthread_cond_t的封装,方便了开发者的使用的资源的安全有效管理。当然,在不同的公司,可能也都有类似的封装,学习boost的源码,无疑可以加深我们的理解。在某些特定的场合,我们也可以学习boost的封装方法,简化我们的日常开发。

最后,奉上简单的生产者、消费者的boost的实现,和前文《并发编程实战: POSIX 使用互斥量和条件变量实现生产者/消费者问题》相比,我们可以看到boost简化了mutex和condition variable的使用。以下代码引自《Boost程序库完全开发指南》:

#include <boost/thread.hpp>
#include <stack>
using std::stack;
using std::cout;
class buffer
{
private:
boost::mutex mu; // 条件变量需要配合互斥量
boost::condition_variable_any cond_put; // 生产者写入
boost::condition_variable_any cond_get; // 消费者读走 stack<int> stk;
int un_read;
int capacity; bool is_full()
{
return un_read == capacity;
}
bool is_empty()
{
return 0 == un_read;
} public:
buffer(size_t capacity) : un_read(0), capacity(capacity)
{}
    void put(int x)
    {         boost::mutex::scoped_lock lock(mu); // 这里是读锁的门闩类         while (is_full())
        {
            cout << "full waiting..." << endl;
            cond_put.wait(mu); // line:51
        }
        stk.push(x);
        ++un_read;         cond_get.notify_one();
    }
    void get(int *x)
    {
        boost::mutex::scoped_lock lock(mu); // 这里是读锁的门闩类         while (is_empty())
        {
            cout << "empty waiting..." << endl;
            cond_get.wait(mu);
        }
        *x = stk.top();
        stk.pop();
        --un_read;         cond_put.notify_one(); // 通知 51line可以写入了
    }
}; buffer buf(5); void producer(int n)
{
    for (int i = 0; i < n; ++i)
    {
        cout << "put : " << i << endl;
        buf.put(i);
    }
} void consumer(int n)
{
    int x;
    for (int i = 0; i < n; ++i)
    {
        buf.get(&x);
        cout << "get : " << x << endl;
    }
} int main()
{
    boost::thread t1(producer, 20);
    boost::thread t2(consumer, 10);
    boost::thread t3(consumer, 10);     t1.join();
    t2.join();
    t3.join();     return 0;
}

最后说一句,condition_variable_any == condition, from /boost/thread/condition.hpp

namespace boost
{
typedef condition_variable_any condition;
}

最新文章

  1. MFC 滑动条的重绘
  2. BASH 漏洞修复
  3. 使用celery之深入celery配置(转)
  4. 时间格式转化 String2datestyle
  5. Android Launcher分析和修改9——Launcher启动APP流程
  6. 配置JDK时环境变量path和JAVA_HOME的作用是什么?
  7. OpenCV学习笔记——多种Smooth平滑处理
  8. Android 自定义控件-TextView
  9. MyEclipse安装Eclipse Memory Analyzer插件,并进行错误文件分析流程
  10. 使用R进行相关性分析
  11. AJAX - 类型“System.Web.UI.UpdatePanel”不具有名为“FileUpload”的公共属性。
  12. SVN在branch兼并和游戏patch(1)
  13. Wannafly挑战赛5 补题
  14. python 远程调度进程服务与客户端
  15. MySql插入点数据
  16. python小总结3(异常、单例设计模式)
  17. Spring任务调度器之Task的使用(转)
  18. python的笔记
  19. asterisk channel driver dev ref
  20. Windows服务器PHPstudy配置安装微擎教程

热门文章

  1. js添加key为数字的对象,通过类似于通过访问数组的中括号形式访问对象属性
  2. js将当前时间格式化为年-月-日 时:分:秒
  3. mybatis源码解读(一)——初始化环境
  4. java反射 概念
  5. Kinect2.0 MultiSourceFrameReader 的 AcquireLatestFrame 方法获取不到帧的解决方案
  6. ubuntu下安装 python 常用软件
  7. 排序分析函数中对null的处理
  8. 打印n阶菱形
  9. C++雾中风景8:Lambda表达式
  10. Python3 条件控制