Hoeffding霍夫丁不等式

在<>第八章"集成学习"部分, 考虑二分类问题\(y \in \{-1, +1\}\) 和真实函数\(f\), 假定基分类器的错误率为\(\epsilon\), 即对每个基分类器\(h_{i}\)有
\[
\begin{equation}
P(h_{i}(x) \neq f(x)) = \epsilon
\end{equation}
\]
假设集成通过简单投票法结合\(T\)个基分类器, 若有超过半数的基分类器正确, 则集成分类就正确:

\[
\begin{equation}
H(x) = sign(\sum_{i=1}^{T}h_{i}(x))
\end{equation}
\]
假设基分类器的错误率相互独立, 则由Hoeffding不等式可知, 集成的错误率为:
\[
\begin{equation}
\begin{aligned}
P(H(x) \neq f(x)) &= \sum_{k=0}^{\lfloor T/2 \rfloor}{T \choose k}(1 - \epsilon)^{k}\epsilon^{T - k}\\
&\leq exp(-\frac{1}{2}T(1 - 2\epsilon)^{2})
\end{aligned}
\end{equation}
\]
对怎么得到小于等于之后的式子不甚明白.

维基百科上Hoeffding不等式的介绍是:

Hoeffding不等式适用于有界的随机变量. 设有两两独立的一系列随机变量\(X_{1}, ..., X_{n}\). 假设对所有的\(1\le i \le n\), \(X_{i}\)都是几乎有界的变量, 即满足:
\[
\begin{equation}
\mathbb{P}(X_{i} \in [a_{i},b_{i}]) = 1.
\end{equation}
\]
那么这n个随机变量的经验期望:
\[
\begin{equation}
\overline{X} = \frac{X_{1}+\cdot\cdot\cdot+X_{n}}{n}
\end{equation}
\]
满足以下的不等式:
\[
\begin{equation}
\mathbb{P}(\overline{X}-\mathbb{E}[\overline{X}]\ge t) \le exp\left(-\frac{2t^{2}n^{2}}{\sum_{i=1}^{n}(b_i-a_i)^2}\right)
\end{equation}
\]
\[
\begin{equation}
\mathbb{P}(\lvert \overline{X}-\mathbb{E}[\overline{X}]\rvert \ge t) \le 2exp \left(-\frac{2t^2n^2}{\sum_{i=1}^n(b_i-a_i)^2} \right)
\end{equation}
\]

先记这些定义吧, 证明以后有兴趣再看吧....

伯努利随机变量的特例

假定一个硬币A面朝上的概率为\(p\), 则B面朝上的概率为\(1-p\). 抛n次硬币, A面朝上次数的期望值为\(n * p\). 则A面朝上的次数不超过k次的概率为:
\[
\begin{equation}
\begin{aligned}
P(H(n) \le k)&=\sum_{i=0}^kC_n^ip^i(1-p)^{n-i}\\
&=\sum_{i=0}^k\frac{n!}{i!(n-i)!}p^i(1-p)^{n-i}
\end{aligned}
\end{equation}
\]
\(H(n)\)为抛n次硬币A面朝上的次数

对某一\(\varepsilon > 0\)当\(k=(p-\varepsilon)n\) 时, 有Hoeffding不等式
\[
\begin{equation}
P(H(n)\le(p-\varepsilon)n)\le e^{-2\varepsilon ^2n}
\end{equation}
\]
对应的, 当\(k=(p+\varepsilon)n\) 时,
\[
\begin{equation}
P(H(n)\ge(p+\varepsilon)n)\le e^{-2\varepsilon ^2n}
\end{equation}
\]
由此可得
\[
\begin{equation}
P((p-\varepsilon)n \le H(n) \le (p + \varepsilon)n) \ge 1-2e^{-2\varepsilon^2n}
\end{equation}
\]
利用式(9)可推式(3)

式(3)的\(1-\epsilon\) 相当于式(9)的\(p\) , 令\(H(n)\)为基分类器分类正确的数量, 有
\[
\begin{equation}
P(H(x)\neq f(x))=P(H(n) \le \lfloor\frac{T}{2}\rfloor)
\end{equation}
\]
总分类器的数量为\(T\)(就是n), 令\(\frac{T}{2}=(1-\epsilon-\varepsilon)T\), 可推得\(\varepsilon=\frac{1}{2} - \epsilon\) , 根据式(9)可得
\[
\begin{equation}
\begin{aligned}
P(H(n) \le \lfloor\frac{T}{2}\rfloor) &\le exp(-2(\epsilon-\frac{1}{2})^2T)\\
&=exp(-2(\epsilon^2+\frac{1}{4}-\epsilon)T)\\
&=exp(-\frac{T}{2}(4\epsilon^2+1-4\epsilon))\\
&=exp(-\frac{1}{2}T(1 - 2\epsilon)^{2})
\end{aligned}
\end{equation}
\]

便得到式(3)得最终不等式形式

最新文章

  1. OpenCV人脸识别Eigen算法源码分析
  2. xamarin MasterDetailPage点击Master时卡顿现象
  3. .net中 页面包含子页面 类似include的功能--(记录九)
  4. DELL PowerEdge 2950更换告警硬盘
  5. 20145236 冯佳 《Java程序设计》第1周学习总结
  6. swappiness
  7. Oracle 取两个表中数据的交集并集差异集合
  8. XSS攻击及防御(转)
  9. 获取文件属性信息之stat、fstat和lstat
  10. Android 图标右上角添加数字提醒
  11. 初学jquery遇见的两个小问题!
  12. Wooden Sticks(杭州电1051)
  13. Hadoop HDFS文件操作
  14. 批处理+组策略 实现规定时间段无法开机and定时关机
  15. 提取位于&lt;title&gt;...&lt;/title&gt;内的文本标题内容
  16. ASP.NET Aries 开发框架(已支持.NET Core)
  17. Ansible之Playbook详解、案例
  18. 完成端口IOCP详解
  19. C++ Primer 笔记——多重继承与虚继承
  20. Promise 异步函数的加上外壳终止Promise

热门文章

  1. [RK3399] Type-C改为MicroUSB
  2. Go 语言入门(三)并发
  3. PHP fopen/file_get_contents与curl性能比较
  4. [Java]在JAVA中使用Oracle的INSERT ALL语法进行批量插入
  5. wordpress插件开发流程梳理-二
  6. SQL-W3School-函数:SQL MID() 函数
  7. 阶段5 3.微服务项目【学成在线】_day18 用户授权_14-细粒度授权-我的课程细粒度授权-需求分析
  8. Qt学习过程
  9. Django——models中导入数据重复的解决办法
  10. PAT 甲级 1056 Mice and Rice (25 分) (队列,读不懂题,读懂了一遍过)