java设计模式


以下内容为本人的学习笔记,如需要转载,请声明原文链接   https://www.cnblogs.com/lyh1024/p/16724932.html


设计模式

1.设计模式的目的

编写软件过程中,程序员面临着来自耦合性,内聚性和可维护性,可扩展性,重用性,灵活性等多方面的挑战,设计模式是为了让程序(软件)具有更好的

  1. 代码重用性(即:相同功能的代码,不用多次编写)

  2. 可读性(即:编程规范性,便于其他程序员的阅读和理解)

  3. 可扩展性(即:当需要增加新的功能时,非常的方便,也称为可维护性)

  4. 可靠性(即:当我们增加新的功能后,对原来的功能没有影响)

  5. 使程序呈现高内聚,低耦合的特性

2.设计模式七大原则

设计模式原则,其实就是程序员在编程时,应当遵守的原则,也是各种设计模式的基础(即:设计模式为什么这样设计的依据)

设计模式常用的七大原则有:
  1. 单一职责原则

  2. 接口隔离原则

  3. 依赖倒转原则

  4. 里式替换原则

  5. 开闭原则

  6. 迪米特法则

  7. 合成复用原则

3.单一职责原则

对类来说,即一个类只负责一项职责。如类A负责两个不同职责:职责1,职责2。当职责1需求变更而改变A时,可能造成职责2执行错误,所以需要将类A细分为两个类,A1类,A2类。

代码:
public class Single {
public static void main(String[] args) {
//小明在看纸质书,小红在看电子书
paperRead r1 = new paperRead();
r1.read("小明");

eRead r2 = new eRead();
r2.read("小红");
}


}

//1.遵守单一职责原则
//2.将类分解,同时修改客户端

class paperRead{

public void read(String name){
System.out.println(name+"在看纸质书...");
}

}
class eRead{

public void read(String name){
System.out.println(name+"在看电子书...");
}

}

public class Single {
public static void main(String[] args) {
//小明在看纸质书,小红在看电子书
ReadType r = new ReadType();
r.paperRead("小明");
r.eRead("小红");
}

}
//1.这种方法只是增加方法
//2.这里虽然没有在类这个级别上遵守单一职责原则,但是在方法级别上,仍旧是遵守单一职责原则,对于方法少的可以这样做
class ReadType{

public void paperRead(String name){
System.out.println(name+"在看纸质书...");
} public void eRead(String name) {
System.out.println(name + "在看电子书...");
}
}
3.2 单一职责原则注意事项
  1. 降低类的复杂度,一个类只负责一个职责;

  2. 提高类的可读性,可维护性;

  3. 降低变更引起的风险;

  4. 通常情况下,我们应当遵守单一职责原则,只有逻辑足够简单,才可以在代码级违反单一职责原则;只有方法数量足够少,才可以在方法级别保持单一职责原则。

4.接口隔离原则

客户端不应该依赖它不需要的接口,即一个类对另一个类的依赖应该建立在最小的接口上

示例:

  • 类A通过接口Interface1依赖类B,类C通过接口Interface1依赖类D,如果接口Interface1对于类A和类C来说不是最小接口,那么类B和类D必须去实现他们不需要的方法。

  • 按接口隔离原则应当这样处理:

    将接口Interface1拆分为独立的几个接口,类A和类C分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则。

    代码:

package com.atguigu.principle.segregation.improve;

public class Segregation1 {

public static void main(String[] args) {
// TODO Auto-generated method stub
// 使用一把
A a = new A();
a.depend1(new B()); // A类通过接口去依赖B类
a.depend2(new B());
a.depend3(new B());

C c = new C();

c.depend1(new D()); // C类通过接口去依赖(使用)D类
c.depend4(new D());
c.depend5(new D());

}

}

// 接口1
interface Interface1 {
void operation1();

}

// 接口2
interface Interface2 {
void operation2();

void operation3();
}

// 接口3
interface Interface3 {
void operation4();

void operation5();
}

class B implements Interface1, Interface2 {
public void operation1() {
System.out.println("B 实现了 operation1");
}

public void operation2() {
System.out.println("B 实现了 operation2");
}

public void operation3() {
System.out.println("B 实现了 operation3");
}

}

class D implements Interface1, Interface3 {
public void operation1() {
System.out.println("D 实现了 operation1");
}

public void operation4() {
System.out.println("D 实现了 operation4");
}

public void operation5() {
System.out.println("D 实现了 operation5");
}
}

class A { // A 类通过接口Interface1,Interface2 依赖(使用) B类,但是只会用到1,2,3方法
public void depend1(Interface1 i) {
i.operation1();
}

public void depend2(Interface2 i) {
i.operation2();
}

public void depend3(Interface2 i) {
i.operation3();
}
}

class C { // C 类通过接口Interface1,Interface3 依赖(使用) D类,但是只会用到1,4,5方法
public void depend1(Interface1 i) {
i.operation1();
}

public void depend4(Interface3 i) {
i.operation4();
}

public void depend5(Interface3 i) {
i.operation5();
}
}

5.依赖倒转原则

依赖倒转原则是指:

  1. 高层模块不应该依赖底层模块,二者都应该依赖其抽象;

  2. 抽象不应该依赖细节,细节应该依赖抽象

  3. 依赖倒转的中心思想是面向接口编程

  4. 依赖倒转原则是基于这样的设计理念:相对于细节的多变性,抽象的东西要稳定的多。以抽象为基础搭建的架构比以细节为基础的架构要稳定的多。在java中,抽象指的是接口或抽象类,细节就是具体的实现类;

  5. 使用接口或抽象类的目的是制定好规范,而不涉及任何具体的操作,把展现细节的任务交给他们的实现类去完成

    简单来说,类的方法参数原来是调用特定类的类型,现在倒转过来,使用接口的类型;就是类的参数为接口类型的变量。

依赖关系传递的三种方式:

  • 接口传递

  • 构造方法传递

  • setter方法传递

    代码

public class DependencyPass {

public static void main(String[] args) {
// TODO Auto-generated method stub
ChangHong changHong = new ChangHong();
// OpenAndClose openAndClose = new OpenAndClose();
// openAndClose.open(changHong); //通过构造器进行依赖传递
// OpenAndClose openAndClose = new OpenAndClose(changHong);
// openAndClose.open();
//通过setter方法进行依赖传递
OpenAndClose openAndClose = new OpenAndClose();
openAndClose.setTv(changHong);
openAndClose.open();

}

}

// 方式1: 通过接口传递实现依赖
// 开关的接口
// interface IOpenAndClose {
// public void open(ITV tv); //抽象方法,接收接口
// }
//
// interface ITV { //ITV接口
// public void play();
// }
//
// class ChangHong implements ITV {
//
// @Override
// public void play() {
// // TODO Auto-generated method stub
// System.out.println("长虹电视机,打开");
// }
//
// }
//// 实现接口
// class OpenAndClose implements IOpenAndClose{
// public void open(ITV tv){
// tv.play();
// }
// }

// 方式2: 通过构造方法依赖传递
// interface IOpenAndClose {
// public void open(); //抽象方法
// }
// interface ITV { //ITV接口
// public void play();
// }
// class OpenAndClose implements IOpenAndClose{
// public ITV tv; //成员
// public OpenAndClose(ITV tv){ //构造器
// this.tv = tv;
// }
// public void open(){
// this.tv.play();
// }
// }


// 方式3 , 通过setter方法传递
interface IOpenAndClose {
public void open(); // 抽象方法

public void setTv(ITV tv);
}

interface ITV { // ITV接口
public void play();
}

class OpenAndClose implements IOpenAndClose {
private ITV tv;

public void setTv(ITV tv) {
this.tv = tv;
}

public void open() {
this.tv.play();
}
}

class ChangHong implements ITV {

@Override
public void play() {
// TODO Auto-generated method stub
System.out.println("长虹电视机,打开");
} }

依赖倒转原则注意事项:

  • 底层模块尽量都要有抽象类或接口,或者两者都有,程序稳定性更好;

  • 变量的声明类型尽量是抽象类或接口,这样我们的变量引用和实际对象建,就存在一个缓冲层,利于程序扩展和变化;

  • 继承时遵循里式替换原则。

6.里式替换原则

  • 继承包含这样一层含义:父类中凡是已经实现好的方法,实际上是设定规范和契约,虽然它不强制要求所有的子类必须遵循这些契约,但是如果子类对这些已经实现的方法任意修改,就会对整个继承体系造成破坏。

  • 继承在给程序设计带来便利的同时,也带来弊端,比如使用继承会给程序带来侵入性,程序的可移植性降低,增加对象间的耦合性,如果一个类被其他的类所继承,则当这个类需要修改时,必须考虑到所有的子类,并且父类修改后,所有涉及到子类的功能都有可能产生故障。

这时候,我们就要用到里式替换原则:

  1. 里式替换原则在1988年,有麻省理工学院的一位性里的女士提出的;

  2. 如果对每个类型为T1的对象o1,都有类型为T2的对象o2,使得以T1定义的所有程序P在所有的对象o1都代换成o2时,程序P的行为没有发生变化,那么类型T2是类型T1的子类型。换句话说,所有引用基类的地方必须能透明地使用其子类的对象;

  3. 在使用继承时,遵循里式替换原则,在子类中尽量不要重写父类的方法

  4. 里式替换原则告诉我们,继承实际上让两个类耦合性增强了,在适当的情况下,可以通过聚合,组合,依赖来解决问题

通用做法:原来的父类和子类都继承一个更通俗的基类,原有的继承关系去掉,采用依赖,聚合,组合等关系代替。

代码

public class Liskov {

public static void main(String[] args) {
// TODO Auto-generated method stub
A a = new A();
System.out.println("11-3=" + a.func1(11, 3));
System.out.println("1-8=" + a.func1(1, 8));

System.out.println("-----------------------");
B b = new B();
//因为B类不再继承A类,因此调用者,不会再func1是求减法
//调用完成的功能就会很明确
System.out.println("11+3=" + b.func1(11, 3));//这里本意是求出11+3
System.out.println("1+8=" + b.func1(1, 8));// 1+8
System.out.println("11+3+9=" + b.func2(11, 3)); //使用组合仍然可以使用到A类相关方法
System.out.println("11-3=" + b.func3(11, 3));// 这里本意是求出11-3 ​
}

}

//创建一个更加基础的基类
class Base {
//把更加基础的方法和成员写到Base类
}

// A类
class A extends Base {
// 返回两个数的差
public int func1(int num1, int num2) {
return num1 - num2;
}
}

// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends Base {
//如果B需要使用A类的方法,使用组合关系
private A a = new A(); //这里,重写了A类的方法, 可能是无意识
public int func1(int a, int b) {
return a + b;
}

public int func2(int a, int b) {
return func1(a, b) + 9;
} //我们仍然想使用A的方法
public int func3(int a, int b) {
return this.a.func1(a, b);
}
}

7.开闭原则

  1. 开闭原则是编程中最基础,最重要的设计原则;

  2. 一个软件实体,如类,模块和函数应该对扩展开放(对提供方),对修改关闭(对使用方)。用抽象构建框架,用实现扩展细节;

  3. 当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来实现变化;

  4. 编程中遵循其他原则,以及使用设计模式的目的就是遵循开闭原则。

示例:

public class Ocp {

public static void main(String[] args) {
//使用看看存在的问题
GraphicEditor graphicEditor = new GraphicEditor();
graphicEditor.drawShape(new Rectangle());
graphicEditor.drawShape(new Circle());
graphicEditor.drawShape(new Triangle());
}

}

//这是一个用于绘图的类 [使用方]
class GraphicEditor {
//接收Shape对象,然后根据type,来绘制不同的图形
public void drawShape(Shape s) {
if (s.m_type == 1)
drawRectangle(s);
else if (s.m_type == 2)
drawCircle(s);
else if (s.m_type == 3)
drawTriangle(s);
}

//绘制矩形
public void drawRectangle(Shape r) {
System.out.println(" 绘制矩形 ");
}

//绘制圆形
public void drawCircle(Shape r) {
System.out.println(" 绘制圆形 ");
} //绘制三角形
public void drawTriangle(Shape r) {
System.out.println(" 绘制三角形 ");
}
}

//Shape类,基类
class Shape {
int m_type;
}

class Rectangle extends Shape {
Rectangle() {
super.m_type = 1;
}
}

class Circle extends Shape {
Circle() {
super.m_type = 2;
}
}

//新增画三角形
class Triangle extends Shape {
Triangle() {
super.m_type = 3;
}
}

上述方式的优缺点

  1. 优点是比较好理解,简单操作;

  2. 缺点是违反了设计模式的ocp原则,即对外扩展,对修改关闭。即当我们给类增加新功能的时候,尽量不修改代码,或者尽可能少修改代码;

  3. 比如我们这是要心增加一个图形种类三角形,我们需要做如下修改,修改的地方较多

把创建Shape类做出抽象类,并提供一个抽象的draw方法,让子类去实现即可,这样我们有新的图形种类时,只需要让新的图形来继承Shape,并实现draw方法即可,使用方的代码就不需要修改,满足了开闭原则:

public class Ocp {

public static void main(String[] args) {
//使用看看存在的问题
GraphicEditor graphicEditor = new GraphicEditor();
graphicEditor.drawShape(new Rectangle());
graphicEditor.drawShape(new Circle());
graphicEditor.drawShape(new Triangle());
graphicEditor.drawShape(new OtherGraphic());
}

}

//这是一个用于绘图的类 [使用方]
class GraphicEditor {
//接收Shape对象,调用draw方法
public void drawShape(Shape s) {
s.draw();
}
​ }

//Shape类,基类
abstract class Shape {
int m_type; public abstract void draw();//抽象方法
}

class Rectangle extends Shape {
Rectangle() {
super.m_type = 1;
}

@Override
public void draw() {
// TODO Auto-generated method stub
System.out.println(" 绘制矩形 ");
}
}

class Circle extends Shape {
Circle() {
super.m_type = 2;
}
@Override
public void draw() {
// TODO Auto-generated method stub
System.out.println(" 绘制圆形 ");
}
}

//新增画三角形
class Triangle extends Shape {
Triangle() {
super.m_type = 3;
}
@Override
public void draw() {
// TODO Auto-generated method stub
System.out.println(" 绘制三角形 ");
}
}

//新增一个图形
class OtherGraphic extends Shape {
OtherGraphic() {
super.m_type = 4;
}

@Override
public void draw() {
// TODO Auto-generated method stub
System.out.println(" 绘制其它图形 ");
}
}

8.迪米特法则

  1. 一个对象应该对其他对象保持最少的了解;

  2. 类与类关系越密切,耦合度越大;

  3. 迪米特法则又叫最少知道原则,即一个类对自己依赖的类知道的越少越好。也就是说,对于被依赖的类不管有多么复杂,都尽量将逻辑封装在类的内部。对外处理提供的public方法,不对外泄露任何信息;

  4. 迪米特法则还有个更简单的定义:只与直接的朋友通信;

  5. 直接的朋友:每个对象都会与其他对象有耦合关系,只要两个对象之间有耦合关系,我们就说这两个对象之间是朋友关系。耦合的方式很多,依赖,关联,组合,聚合等。其中,我们称出现成员变量,方法参数,方法返回值中的类为直接的朋友,而出现在局部变量中的类不是直接的朋友。也就是说,陌生的类最好不要以局部变量的形式出现在类的内部。

示例:

有一个学校,下属有各个学院和总部,现要求学校总部员工ID和学院员工的id:

import java.util.ArrayList;
import java.util.List;

//客户端
public class Demeter1 {

public static void main(String[] args) {
System.out.println("~~~使用迪米特法则的改进~~~");
//创建了一个 SchoolManager 对象
SchoolManager schoolManager = new SchoolManager();
//输出学院的员工id 和 学校总部的员工信息
schoolManager.printAllEmployee(new CollegeManager());

}

}


//学校总部员工类
class Employee {
private String id;

public void setId(String id) {
this.id = id;
}

public String getId() {
return id;
}
}


//学院的员工类
class CollegeEmployee {
private String id;

public void setId(String id) {
this.id = id;
}

public String getId() {
return id;
}
}


//管理学院员工的管理类
class CollegeManager {
//返回学院的所有员工
public List<CollegeEmployee> getAllEmployee() {
List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list
CollegeEmployee emp = new CollegeEmployee();
emp.setId("学院员工id= " + i);
list.add(emp);
}
return list;
} //输出学院员工的信息
public void printEmployee() {
//获取到学院员工
List<CollegeEmployee> list1 = getAllEmployee();
System.out.println("------------学院员工------------");
for (CollegeEmployee e : list1) {
System.out.println(e.getId());
}
}
}

//学校管理类

//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则
class SchoolManager {
//返回学校总部的员工
public List<Employee> getAllEmployee() {
List<Employee> list = new ArrayList<Employee>(); for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list
Employee emp = new Employee();
emp.setId("学校总部员工id= " + i);
list.add(emp);
}
return list;
}

//该方法完成输出学校总部和学院员工信息(id)
void printAllEmployee(CollegeManager sub) { //分析问题
//1. 将输出学院的员工方法,封装到CollegeManager
sub.printEmployee(); //获取到学校总部员工
List<Employee> list2 = this.getAllEmployee();
System.out.println("------------学校总部员工------------");
for (Employee e : list2) {
System.out.println(e.getId());
}
}
}

迪米特法则注意事项:

  • 迪米特法则的核心是降低类之间的耦合;

  • 但是注意:由于每个类都减少了不必要的依赖,因此迪米特法则只是要求类间(对象间)耦合关系,并不是要求完全没有依赖关系。

9.合成复用原则

尽量使用合成/聚合的方式,而不是使用继承

聚合:

组合:

10.设计原则核心思想

  1. 找出应用中可能需要变化之处,把他们独立出来,不要和那些不需要变化的代码混在一起;

  2. 针对接口编程,而不是针对实现编程;

  3. 为了交互对象之间的松耦合设计而努力。

参考资料:

2022-09-24  09:09:56

最新文章

  1. start: Unable to connect to Upstart: Failed to connect to socket /com/ubuntu/upstart:
  2. 关于float /double、string类型的hash函数/hash表实现(转)
  3. Javascript-回调函数浅谈
  4. VFS分析(一)挂载(持续更新)
  5. C# Window Service详解
  6. POJ 3786 Adjacent Bit Counts (DP)
  7. NetBeans中文乱码解决办法
  8. Android开发程序获取GPS信息步骤
  9. 【SF】开源的.NET CORE 基础管理系统 -介绍篇
  10. MySQL的JOIN(三):JOIN优化实践之内循环的次数
  11. 201421123042 《Java程序设计》第14周学习总结
  12. vs2013+opencv3.2配置
  13. 3.HttpSession
  14. 为何学习matplotlib-【老鱼学matplotlib】
  15. LOJ#6277. 数列分块入门 1
  16. hibernate入门程序
  17. CEditUI 控件使用
  18. CSS布局学习(二) - flex属性
  19. mysql初次启动相关配置
  20. java作用域public ,private ,protected 及不写时的区别

热门文章

  1. 【填坑】树莓派4B上运行Bullseye版本系统,不能登录xrdp的问题~~
  2. 管正雄:基于预训练模型、智能运维的QA生成算法落地
  3. SpringWeb 拦截器
  4. treap(大根堆)模板
  5. python将命令输出写入文件或临时缓存
  6. 浅谈 exgcd
  7. Nginx 集群部署(Keepalived)
  8. 6.13 NOI 模拟
  9. Luogu P3273 [SCOI2011]棘手的操作(左偏树)
  10. LuoguP1020 导弹拦截 (LIS)