训练分类器

 

1. 数据

 

处理图像,文本,音频或视频数据时,可以使用将数据加载到 NumPy 数组中的标准 Python 包。 然后,将该数组转换为torch.*Tensor

 
  • 对于图像,Pillow,OpenCV 等包很有用
  • 对于音频,请使用 SciPy 和 librosa 等包
  • 对于文本,基于 Python 或 Cython 的原始加载,或者 NLTK 和 SpaCy 很有用
 

专门针对视觉,一个名为torchvision的包,其中包含用于常见数据集(例如 Imagenet,CIFAR10,MNIST 等)的数据加载器,以及用于图像(即torchvision.datasets和torch.utils.data.DataLoader)的数据转换器

 

我们将使用 CIFAR10 数据集。 它具有以下类别:“飞机”,“汽车”,“鸟”,“猫”,“鹿”,“狗”,“青蛙”,“马”,“船”,“卡车”。 CIFAR-10 中的图像尺寸为3x32x32,即尺寸为32x32像素的 3 通道彩色图像

 

数据集来源:CIFAR-10 and CIFAR-100 datasets

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck
 

由于图片地址在国外,以上图片的加载可能不如人意,大致就是这个图像:

 

2. 训练一个分类器

 

我们将会按顺序做以下步骤:

 
  1. 用torchvision 加载和标准化CIFAR10训练和测试数据
  2. 定义一个神经网络
  3. 定义一个损失函数
  4. 使用训练数据训练网络
  5. 使用测试数据测试网络
 

2.1. 加载数据并标准化

 

使用torchvision加载CIFAR10数据十分简单:

In [1]:
import torch
import torchvision
import torchvision.transforms as transforms
 

输出的torchvision数据集是PILImage图像,其范围是[0,1]。我们将它转化为Tensor的标准范围[-1,1]

In [2]:
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) batch_size = 4 trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=0) testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=0) classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
 
Files already downloaded and verified
Files already downloaded and verified
 
  • 注意:如果在Windows上运行并且得到BrankPipeError,请尝试将Torch.utils.Data.Dataloader()的Num_Worker设置为0。官网示例是Num_Worker设置为2
 

让我们显示一下训练的图片:

In [3]:
import matplotlib.pyplot as plt
import numpy as np # functions to show an image def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show() # get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next() # show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join(f'{classes[labels[j]]:5s}' for j in range(batch_size)))
 
 
dog   frog  dog   cat
 

2.2.定义一个卷积神经网络

In [4]:
import torch.nn as nn
import torch.nn.functional as F class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x net = Net()
 

2.3.定义一个损失函数和优化器

 

让我们使用分类交叉熵损失和带有动量的 SGD

In [5]:
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
 

2.4.训练网络

 

有趣的事情开始了,我们只需要循环我们的迭代器,并反馈到网络进行优化

In [6]:
for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data # zero the parameter gradients
optimizer.zero_grad() # forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step() # print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
running_loss = 0.0 print('Finished Training')
 
[1,  2000] loss: 2.193
[1, 4000] loss: 1.847
[1, 6000] loss: 1.661
[1, 8000] loss: 1.569
[1, 10000] loss: 1.488
[1, 12000] loss: 1.445
[2, 2000] loss: 1.405
[2, 4000] loss: 1.355
[2, 6000] loss: 1.329
[2, 8000] loss: 1.320
[2, 10000] loss: 1.277
[2, 12000] loss: 1.250
Finished Training
 

快速保存训练模型:

In [7]:
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
 

2.5.使用测试集测试网络

 

显示测试集中的图像:

In [8]:
dataiter = iter(testloader)
images, labels = dataiter.next() # print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join(f'{classes[labels[j]]:5s}' for j in range(4)))
 
 
GroundTruth:  cat   ship  ship  plane
 

加载保存的模型:

In [9]:
net = Net()
net.load_state_dict(torch.load(PATH))
Out[9]:
<All keys matched successfully>
 

使用神经网络进行预测:

In [10]:
outputs = net(images)
In [11]:
outputs
Out[11]:
tensor([[-0.4519, -2.6896,  1.1111,  2.4411, -1.2739,  0.9407,  1.2027, -0.9218,
-0.3061, -1.4944],
[ 4.0095, 5.7177, -1.3274, -3.2596, -4.4239, -6.4377, -5.2835, -5.2639,
8.8550, 3.4490],
[ 2.2643, 1.9055, 0.2977, -1.2159, -1.5517, -2.6117, -2.5904, -2.0696,
3.1488, 0.7971],
[ 3.6302, 0.2553, 0.3926, -1.3850, 0.2644, -2.8077, -2.8192, -1.0332,
1.9776, 0.4094]], grad_fn=<AddmmBackward0>)
 

输出是 10 类的能量。 一个类别的能量越高,网络就认为该图像属于特定类别。 因此,让我们获取最高能量的指数:

In [12]:
_, predicted = torch.max(outputs, 1)

print('Predicted: ', ' '.join(f'{classes[predicted[j]]:5s}'
for j in range(4)))
 
Predicted:  cat   ship  ship  plane
 

此次结果看起来不错

 

我们看看这个网络在整个数据集的表现:

In [13]:
correct = 0
total = 0
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
for data in testloader:
images, labels = data
# calculate outputs by running images through the network
outputs = net(images)
# the class with the highest energy is what we choose as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item() print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')
 
Accuracy of the network on the 10000 test images: 56 %
 

这看起来是比偶然更好(偶然的准确率是10%,即从10个类别中选择一个),看起来这个网络学到了一些东西

 

看看这个这个分类器在哪些类别分类好,哪些类别分类差:

In [14]:
# prepare to count predictions for each class
correct_pred = {classname: 0 for classname in classes}
total_pred = {classname: 0 for classname in classes} # again no gradients needed
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predictions = torch.max(outputs, 1)
# collect the correct predictions for each class
for label, prediction in zip(labels, predictions):
if label == prediction:
correct_pred[classes[label]] += 1
total_pred[classes[label]] += 1 # print accuracy for each class
for classname, correct_count in correct_pred.items():
accuracy = 100 * float(correct_count) / total_pred[classname]
print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %')
 
Accuracy for class: plane is 65.5 %
Accuracy for class: car is 67.1 %
Accuracy for class: bird is 30.4 %
Accuracy for class: cat is 53.5 %
Accuracy for class: deer is 44.2 %
Accuracy for class: dog is 35.9 %
Accuracy for class: frog is 68.2 %
Accuracy for class: horse is 70.3 %
Accuracy for class: ship is 68.9 %
Accuracy for class: truck is 60.4 %
 

2.6.在GPU上训练

 

如果可以使用 CUDA,首先将我们的设备定义为第一个可见的 cuda 设备:

In [15]:
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# Assuming that we are on a CUDA machine, this should print a CUDA device:

print(device)
 
cuda:0
 

然后,这些方法将递归遍历所有模块,并将其参数和缓冲区转换为 CUDA 张量:

In [16]:
net.to(device)
Out[16]:
Net(
(conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
 

还必须将每一步的输入和目标也发送到 GPU:

In [17]:
inputs, labels = data[0].to(device), data[1].to(device)
 

3.参考资料

最新文章

  1. the operation was attempted on an empty geometry Arcgis Project异常
  2. 基于C/S架构的3D对战网络游戏C++框架 _02系统设计(总体设计、概要设计)
  3. go2shell的安装与修改默认terminal方法
  4. Windows下查看端口占用
  5. 十二、BOOL冒泡
  6. Oracle 关于定义约束 / 修改表结构 /修改约束
  7. 关于百度地图API的地图坐标转换问题
  8. login-登录
  9. (转)[老老实实学WCF] 第一篇 Hello WCF
  10. PHP不显示报错了怎么办~
  11. JS计算字符串长度(中文算2个)
  12. 201521123093 JAVA程序设计
  13. poi导入Excel,数字科学记数法转换
  14. Hadoop记录- Yarn scheduler队列采集
  15. requestium
  16. 前端lvs访问多台nginx代理服务时出现404错误的处理
  17. QPS、PV 、RT(响应时间)之间的关系
  18. 在mk/rte.app.mk 256行加echo $(O_TO_EXE_DO)查看GCC参数
  19. oracle数据库之操作总结
  20. jQuery瀑布流无限拖三大利器:masonry+imagesloaded+infinitescroll

热门文章

  1. 直接快速下载NLTK数据
  2. 《MySQL必知必会》之快速入门存储过程
  3. input、print、字符串格式化输出
  4. Python 缩进语法的起源:上世纪 60-70 年代的大胆创意!
  5. 【机器学习】李宏毅——自注意力机制(Self-attention)
  6. easygui 之integerbox()、enterbox()、multenterbox() 三种输入函数的使用
  7. get请求拼接数组转字符串
  8. 16、SQL操作JSON字段
  9. [Computer Networks]一个http请求的完成的全过程
  10. Linux利用crontab执行定时任务