一、sdhci core说明

1、sdhci说明

具体参考《host(第一章)——概述》

SDHC:Secure Digital(SD) Host Controller,是指一套sd host控制器的设计标准,其寄存器偏移以及意义都有一定的规范,并且提供了对应的驱动程序,方便vendor进行host controller的开发。

vendor按照这套标准设计host controller之后,可以直接使用sdhci driver来实现host controller的使用,(qcom和samsung都使用了这套标准)。而vendor只需要实现平台相关的部分、如clock、pinctrl、power等等的部分即可。

关于这个标准,我们可以参考《SDHC_Ver3.00_Final_110225》。

注意,强调一下,这是一种mmc host controller的设计标准,其本质上还是属于mmc host。并且,其兼容mmc type card,而不是说只能使用于sd type card。

2、sdhci core

因为sdhci driver并不是某个特定host的driver,而是提供了一些接口和操作集方法给对应的host driver使用。

因此,我们将sdhci.c的代码部分称之为sdhci core用以和host driver区分。

其主要功能如下:

  • 为host driver提供分配、释放sdhci_host的接口
  • 为host driver提供注册、卸载sdhci_host的接口
  • 实现sdhci_host和mmc_host的对接(也就是mmc core的对接)
  • 实现host关于SDHCI标准的通用操作(sdhci_ops)
  • 实现host的通用电源管理操作

注意,clock和pinctrl是由host driver自己管理,sdhci core并不参与。

3、代码位置

drivers/mmc/host/sdhci.c
drivers/mmc/host/sdhci.h

二、数据结构

1、struct sdhci_host

sdhci core将host抽象出struct sdhci_host来进行管理和维护。

数据结构如下:

struct sdhci_host {
/* Data set by hardware interface driver */
const char *hw_name; /* Hardware bus name */ // 名称
unsigned int quirks; /* Deviations from spec. */ // 癖好,可以理解为硬件sdhci controller和标准sdhci规范不符合的地方。
unsigned int quirks2; /* More deviations from spec. */ // 癖好2,可以理解为硬件sdhci controller和标准sdhci规范不符合的地方。 int irq; /* Device IRQ */ // sdhci的中断
void __iomem *ioaddr; /* Mapped address */ // sdhci寄存器的基地址
const struct sdhci_ops *ops; /* Low level hw interface */ // 底层硬件的操作接口 struct regulator *vmmc; /* Power regulator (vmmc) */ // sdhci core的LDO
struct regulator *vqmmc; /* Signaling regulator (vccq) */ // 给sdhci io供电的LDO /* Internal data */
struct mmc_host *mmc; /* MMC structure */ // struct mmc_host,用于注册到mmc subsystem中
u64 dma_mask; /* custom DMA mask */ spinlock_t lock; /* Mutex */ // 自旋锁
int flags; /* Host attributes */ // sdhci的一些标识
unsigned int version; /* SDHCI spec. version */ // 当前sdhci的硬件版本
unsigned int max_clk; /* Max possible freq (MHz) */ // 该sdhci支持的最大电压
unsigned int timeout_clk; /* Timeout freq (KHz) */ // 超时频率
unsigned int clk_mul; /* Clock Muliplier value */ // 当前倍频值
unsigned int clock; /* Current clock (MHz) */ // 当前工作频率
u8 pwr; /* Current voltage */ // 当前工作电压
bool runtime_suspended; /* Host is runtime suspended */ // 是否处于runtime suspend状态
struct mmc_request *mrq; /* Current request */ // 当前正在处理的请求
struct mmc_command *cmd; /* Current command */ // 当前的命令请求
struct mmc_data *data; /* Current data request */ // 当前的数据请求
unsigned int data_early:1; /* Data finished before cmd */ // 表示在CMD处理完成前,data已经处理完成 struct sg_mapping_iter sg_miter; /* SG state for PIO */
unsigned int blocks; /* remaining PIO blocks */
int sg_count; /* Mapped sg entries */
u8 *adma_desc; /* ADMA descriptor table */
u8 *align_buffer; /* Bounce buffer */
unsigned int adma_desc_sz; /* ADMA descriptor table size */
unsigned int adma_desc_line_sz; /* ADMA descriptor line size */
unsigned int align_buf_sz; /* Bounce buffer size */
unsigned int align_bytes; /* Alignment bytes (4/8 for 32-bit/64-bit) */
unsigned int adma_max_desc; /* Max ADMA descriptos (max sg segments) */
dma_addr_t adma_addr; /* Mapped ADMA descr. table */
dma_addr_t align_addr; /* Mapped bounce buffer */ struct tasklet_struct card_tasklet; /* Tasklet structures */ // card tasklet,用于处理card的插入或者拔出事件
struct tasklet_struct finish_tasklet; // finsh tasklet,用来通知上层一个请求处理完成(包括出错的情况) struct timer_list timer; /* Timer for timeouts */ // 超时定时器链表 u32 caps; /* Alternative CAPABILITY_0 */ // 表示该sdhci controller的属性
u32 caps1; /* Alternative CAPABILITY_1 */ // 表示该sdhci controller的属性 unsigned int ocr_avail_sdio; /* OCR bit masks */ // 在该sdhci controller上可用的sdio card的ocr值掩码(代表了其可用电压)
unsigned int ocr_avail_sd; // 在该sdhci controller上可用的sd card的ocr值掩码(代表了其可用电压)
unsigned int ocr_avail_mmc; /// 在该sdhci controller上可用的mmc card的ocr值掩码(代表了其可用电压) /* 以下和mmc的tuning相关 */
wait_queue_head_t buf_ready_int; /* Waitqueue for Buffer Read Ready interrupt */
unsigned int tuning_done; /* Condition flag set when CMD19 succeeds */
unsigned int tuning_count; /* Timer count for re-tuning */
unsigned int tuning_mode; /* Re-tuning mode supported by host */
#define SDHCI_TUNING_MODE_1 0
struct timer_list tuning_timer; /* Timer for tuning */ /* 以下和sdhci的qos相关 */
struct sdhci_host_qos host_qos[SDHCI_QOS_MAX_POLICY];
enum sdhci_host_qos_policy last_qos_policy;
bool host_use_default_qos;
unsigned int pm_qos_timeout_us; /* timeout for PM QoS request */
struct device_attribute pm_qos_tout;
struct delayed_work pm_qos_work; struct sdhci_next next_data;
ktime_t data_start_time;
struct mutex ios_mutex;
enum sdhci_power_policy power_policy; bool irq_enabled; /* host irq status flag */ // 表示中断是否使能?
bool async_int_supp; /* async support to rxv int, when clks are off */
bool disable_sdio_irq_deferred; /* status of disabling sdio irq */
u32 auto_cmd_err_sts;
struct ratelimit_state dbg_dump_rs;
int reset_wa_applied; /* reset workaround status */
ktime_t reset_wa_t; /* time when the reset workaround is applied */
int reset_wa_cnt; /* total number of times workaround is used */ unsigned long private[0] ____cacheline_aligned; // 私有数据指针
};
  • 癖好1(sdhci_host->quirks)各个位意义如下:
/* Controller doesn't honor resets unless we touch the clock register */
#define SDHCI_QUIRK_CLOCK_BEFORE_RESET (1<<0)
/* Controller has bad caps bits, but really supports DMA */
#define SDHCI_QUIRK_FORCE_DMA (1<<1)
/* Controller doesn't like to be reset when there is no card inserted. */
#define SDHCI_QUIRK_NO_CARD_NO_RESET (1<<2)
/* Controller doesn't like clearing the power reg before a change */
#define SDHCI_QUIRK_SINGLE_POWER_WRITE (1<<3)
/* Controller has flaky internal state so reset it on each ios change */
#define SDHCI_QUIRK_RESET_CMD_DATA_ON_IOS (1<<4)
/* Controller has an unusable DMA engine */
#define SDHCI_QUIRK_BROKEN_DMA (1<<5)
/* Controller has an unusable ADMA engine */
#define SDHCI_QUIRK_BROKEN_ADMA (1<<6)
/* Controller can only DMA from 32-bit aligned addresses */
#define SDHCI_QUIRK_32BIT_DMA_ADDR (1<<7)
/* Controller can only DMA chunk sizes that are a multiple of 32 bits */
#define SDHCI_QUIRK_32BIT_DMA_SIZE (1<<8)
/* Controller can only ADMA chunks that are a multiple of 32 bits */
#define SDHCI_QUIRK_32BIT_ADMA_SIZE (1<<9)
/* Controller needs to be reset after each request to stay stable */
#define SDHCI_QUIRK_RESET_AFTER_REQUEST (1<<10)
/* Controller needs voltage and power writes to happen separately */
#define SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER (1<<11)
/* Controller provides an incorrect timeout value for transfers */
#define SDHCI_QUIRK_BROKEN_TIMEOUT_VAL (1<<12)
/* Controller has an issue with buffer bits for small transfers */
#define SDHCI_QUIRK_BROKEN_SMALL_PIO (1<<13)
/* Controller does not provide transfer-complete interrupt when not busy */
#define SDHCI_QUIRK_NO_BUSY_IRQ (1<<14)
/* Controller has unreliable card detection */
#define SDHCI_QUIRK_BROKEN_CARD_DETECTION (1<<15)
/* Controller reports inverted write-protect state */
#define SDHCI_QUIRK_INVERTED_WRITE_PROTECT (1<<16)
/* Controller has nonstandard clock management */
#define SDHCI_QUIRK_NONSTANDARD_CLOCK (1<<17)
/* Controller does not like fast PIO transfers */
#define SDHCI_QUIRK_PIO_NEEDS_DELAY (1<<18)
/* Controller losing signal/interrupt enable states after reset */
#define SDHCI_QUIRK_RESTORE_IRQS_AFTER_RESET (1<<19)
/* Controller has to be forced to use block size of 2048 bytes */
#define SDHCI_QUIRK_FORCE_BLK_SZ_2048 (1<<20)
/* Controller cannot do multi-block transfers */
#define SDHCI_QUIRK_NO_MULTIBLOCK (1<<21)
/* Controller can only handle 1-bit data transfers */
#define SDHCI_QUIRK_FORCE_1_BIT_DATA (1<<22)
/* Controller needs 10ms delay between applying power and clock */
#define SDHCI_QUIRK_DELAY_AFTER_POWER (1<<23)
/* Controller uses SDCLK instead of TMCLK for data timeouts */
#define SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK (1<<24)
/* Controller reports wrong base clock capability */
#define SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN (1<<25)
/* Controller cannot support End Attribute in NOP ADMA descriptor */
#define SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC (1<<26)
/* Controller is missing device caps. Use caps provided by host */
#define SDHCI_QUIRK_MISSING_CAPS (1<<27)
/* Controller uses Auto CMD12 command to stop the transfer */
#define SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12 (1<<28)
/* Controller doesn't have HISPD bit field in HI-SPEED SD card */
#define SDHCI_QUIRK_NO_HISPD_BIT (1<<29)
/* Controller treats ADMA descriptors with length 0000h incorrectly */
#define SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC (1<<30)
/* The read-only detection via SDHCI_PRESENT_STATE register is unstable */
#define SDHCI_QUIRK_UNSTABLE_RO_DETECT (1<<31)
  • 癖好2(sdhci_host->quirks2)各个位意义如下:
#define SDHCI_QUIRK2_HOST_OFF_CARD_ON           (1<<0)
#define SDHCI_QUIRK2_HOST_NO_CMD23 (1<<1)
/* The system physically doesn't support 1.8v, even if the host does */
#define SDHCI_QUIRK2_NO_1_8_V (1<<2)
#define SDHCI_QUIRK2_PRESET_VALUE_BROKEN (1<<3)
/*
* Read Transfer Active/ Write Transfer Active may be not
* de-asserted after end of transaction. Issue reset for DAT line.
*/
#define SDHCI_QUIRK2_RDWR_TX_ACTIVE_EOT (1<<4)
/*
* Slow interrupt clearance at 400KHz may cause
* host controller driver interrupt handler to
* be called twice.
*/
#define SDHCI_QUIRK2_SLOW_INT_CLR (1<<5)
/*
* If the base clock can be scalable, then there should be no further
* clock dividing as the input clock itself will be scaled down to
* required frequency.
*/
#define SDHCI_QUIRK2_ALWAYS_USE_BASE_CLOCK (1<<6)
/*
* Dont use the max_discard_to in sdhci driver so that the maximum discard
* unit gets picked by the mmc queue. Otherwise, it takes a long time for
* secure discard kind of operations to complete.
*/
#define SDHCI_QUIRK2_USE_MAX_DISCARD_SIZE (1<<7)
/*
* Ignore data timeout error for R1B commands as there will be no
* data associated and the busy timeout value for these commands
* could be lager than the maximum timeout value that controller
* can handle.
*/
#define SDHCI_QUIRK2_IGNORE_DATATOUT_FOR_R1BCMD (1<<8)
/*
* The preset value registers are not properly initialized by
* some hardware and hence preset value must not be enabled for
* such controllers.
*/
#define SDHCI_QUIRK2_BROKEN_PRESET_VALUE (1<<9)
/*
* Some controllers define the usage of 0xF in data timeout counter
* register (0x2E) which is actually a reserved bit as per
* specification.
*/
#define SDHCI_QUIRK2_USE_RESERVED_MAX_TIMEOUT (1<<10)
/*
* This is applicable for controllers that advertize timeout clock
* value in capabilities register (bit 5-0) as just 50MHz whereas the
* base clock frequency is 200MHz. So, the controller internally
* multiplies the value in timeout control register by 4 with the
* assumption that driver always uses fixed timeout clock value from
* capabilities register to calculate the timeout. But when the driver
* uses SDHCI_QUIRK2_ALWAYS_USE_BASE_CLOCK base clock frequency is directly
* controller by driver and it's rate varies upto max. 200MHz. This new quirk
* will be used in such cases to avoid controller mulplication when timeout is
* calculated based on the base clock.
*/
#define SDHCI_QUIRK2_DIVIDE_TOUT_BY_4 (1 << 11)
/*
* Some SDHC controllers are unable to handle data-end bit error in
* 1-bit mode of SDIO.
*/
#define SDHCI_QUIRK2_IGN_DATA_END_BIT_ERROR (1<<12) /*
* Some SDHC controllers do not require data buffers alignment, skip
* the bounce buffer logic when preparing data
*/
#define SDHCI_QUIRK2_ADMA_SKIP_DATA_ALIGNMENT (1<<13)
/* Some controllers doesn't have have any LED control */
#define SDHCI_QUIRK2_BROKEN_LED_CONTROL (1 << 14)
/* Use reset workaround in case sdhci reset timeouts */
#define SDHCI_QUIRK2_USE_RESET_WORKAROUND (1 << 15)
  • sdhci host的一些标识(sdhci_host->flags)如下:
#define SDHCI_USE_SDMA      (1<<0)  /* Host is SDMA capable */
#define SDHCI_USE_ADMA (1<<1) /* Host is ADMA capable */
#define SDHCI_REQ_USE_DMA (1<<2) /* Use DMA for this req. */
#define SDHCI_DEVICE_DEAD (1<<3) /* Device unresponsive */
#define SDHCI_SDR50_NEEDS_TUNING (1<<4) /* SDR50 needs tuning */
#define SDHCI_NEEDS_RETUNING (1<<5) /* Host needs retuning */
#define SDHCI_AUTO_CMD12 (1<<6) /* Auto CMD12 support */
#define SDHCI_AUTO_CMD23 (1<<7) /* Auto CMD23 support */
#define SDHCI_PV_ENABLED (1<<8) /* Preset value enabled */
#define SDHCI_SDIO_IRQ_ENABLED (1<<9) /* SDIO irq enabled */
#define SDHCI_HS200_NEEDS_TUNING (1<<10) /* HS200 needs tuning */
#define SDHCI_USING_RETUNING_TIMER (1<<11) /* Host is using a retuning timer for the card */
#define SDHCI_HS400_NEEDS_TUNING (1<<12) /* HS400 needs tuning */
#define SDHCI_USE_ADMA_64BIT (1<<13)/* Host is 64-bit ADMA capable */

2、struct sdhci_ops结构体

sdhci core只是提供了一些接口和符合mmc core的操作集方法给对应的host driver使用。由于各个host的硬件有所差异,所以实际和硬件交互的驱动部分还是在host driver中实现。

所以sdhci core要求host提供标准的访问硬件的一些方法。而这些方法就被定义在了struct sdhci_ops结构体内部。

结构体如下:

struct sdhci_ops {
#ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS
// 表示host另外提供了一套访问寄存器的方法,没有定义的话,则说明使用通用的读写寄存器的方法
u32 (*read_l)(struct sdhci_host *host, int reg);
u16 (*read_w)(struct sdhci_host *host, int reg);
u8 (*read_b)(struct sdhci_host *host, int reg);
void (*write_l)(struct sdhci_host *host, u32 val, int reg);
void (*write_w)(struct sdhci_host *host, u16 val, int reg);
void (*write_b)(struct sdhci_host *host, u8 val, int reg);
#endif void (*set_clock)(struct sdhci_host *host, unsigned int clock); // 设置时钟频率 int (*enable_dma)(struct sdhci_host *host); // 使能DMA
unsigned int (*get_max_clock)(struct sdhci_host *host); // 获取支持的最大时钟频率
unsigned int (*get_min_clock)(struct sdhci_host *host); // 获取支持的最小时钟频率
unsigned int (*get_timeout_clock)(struct sdhci_host *host);
int (*platform_bus_width)(struct sdhci_host *host, int width);
void (*platform_send_init_74_clocks)(struct sdhci_host *host,
u8 power_mode);
unsigned int (*get_ro)(struct sdhci_host *host); // 获取
void (*platform_reset_enter)(struct sdhci_host *host, u8 mask); // 进入平台复位的方法
void (*platform_reset_exit)(struct sdhci_host *host, u8 mask); // 退出平台复位的方法
int (*set_uhs_signaling)(struct sdhci_host *host, unsigned int uhs); // 设置uhs方式
void (*hw_reset)(struct sdhci_host *host); // 硬件复位的方法
void (*platform_suspend)(struct sdhci_host *host); // 平台host的suspend方法
void (*platform_resume)(struct sdhci_host *host); // 平台host的resume方法
void (*adma_workaround)(struct sdhci_host *host, u32 intmask);
void (*platform_init)(struct sdhci_host *host); // 平台host的初始化方法
void (*check_power_status)(struct sdhci_host *host, u32 req_type); // 检测总线的电源状态
#define REQ_BUS_OFF (1 << 0)
#define REQ_BUS_ON (1 << 1)
#define REQ_IO_LOW (1 << 2)
#define REQ_IO_HIGH (1 << 3)
int (*execute_tuning)(struct sdhci_host *host, u32 opcode); // 执行tuning操作的的方法
void (*toggle_cdr)(struct sdhci_host *host, bool enable);
unsigned int (*get_max_segments)(void);
void (*platform_bus_voting)(struct sdhci_host *host, u32 enable); // 平台总线投票的方法
void (*disable_data_xfer)(struct sdhci_host *host);
void (*dump_vendor_regs)(struct sdhci_host *host);
int (*config_auto_tuning_cmd)(struct sdhci_host *host,
bool enable,
u32 type);
int (*enable_controller_clock)(struct sdhci_host *host);
void (*reset_workaround)(struct sdhci_host *host, u32 enable);
};

这个结构体也就是host driver要实现的核心内容。

3、struct mmc_host_ops sdhci_ops

注意:这里的sdhci_ops是一个变量名,和上述的struct sdhci_ops不是同一个概念。搞不懂为什么这么命名,容易混淆。

sdhci core使用sdhci_ops作为sdhci host抽象出来的mmc host的操作集,所以其是一个struct mmc_host_ops结构体。

后续mmc core关于这个host的操作也都是基于这个操作集上实现的,包括使能host(enable方法)、禁用host(disable方法)、发送请求(request方法)。

具体参考《mmc core》系列。

具体实现如下,具体意义参考《mmc core(第二章)——数据结构和宏定义说明》:

static const struct mmc_host_ops sdhci_ops = {
// post_req和pre_req是为了实现异步请求处理而设置的
// 异步请求处理就是指,当另外一个异步请求还没有处理完成的时候,可以先准备另外一个异步请求而不必等待
// 具体参考《mmc core主模块》
.pre_req = sdhci_pre_req,
.post_req = sdhci_post_req,
.request = sdhci_request, // host处理mmc请求的方法,在mmc_start_request中会调用
.set_ios = sdhci_set_ios, // 设置host的总线的io setting
.get_cd = sdhci_get_cd, // 检测host的卡槽中card的插入状态
.get_ro = sdhci_get_ro, // 获取host上的card的读写属性
.hw_reset = sdhci_hw_reset, // 硬件复位
.enable_sdio_irq = sdhci_enable_sdio_irq,
.start_signal_voltage_switch = sdhci_start_signal_voltage_switch, // 切换信号电压的方法
.execute_tuning = sdhci_execute_tuning, // 执行tuning操作,为card选择一个合适的采样点
.card_event = sdhci_card_event,
.card_busy = sdhci_card_busy, // 用于检测card是否处于busy状态
.enable = sdhci_enable, // 使能host,当host被占用时(第一次调用mmc_claim_host)调用
.disable = sdhci_disable, // 禁用host,当host被释放时(第一次调用mmc_release_host)调用
.stop_request = sdhci_stop_request, // 停止请求处理的方法
.get_xfer_remain = sdhci_get_xfer_remain,
.notify_load = sdhci_notify_load,
};

三、API总览

1、sdhci_host分配和释放相关

  • sdhci_alloc_host & sdhci_free_host

由底层host driver调用。

sdhci_alloc_host为host driver分配一个sdhci_host和mmc_host,并实现其初始化,以及sdhci_host和mmc_host的关联。

sdhci_free_host则是用来释放一个sdhci_host。

原型:struct sdhci_host *sdhci_alloc_host(struct device *dev, size_t priv_size)
参数说明:struct device *dev——》对应host的device结构体
size_t priv_size——》要分配的sdhci_host的私有数据的长度,一般是平台自己定制的host的长度。 原型:void sdhci_free_host(struct sdhci_host *host)

2、sdhci_host的注册和卸载相关

  • sdhci_add_host & sdhci_remove_host

由底层host driver调用。

sdhci_add_host用于向sdhci core注册一个sdhci_host。会根据sdhci的寄存器以及部分标识设置其mmc_host,最终将mmc_host注册到mmc core中。

因此,在调用sdhci_add_host之前,必须准备好sdhci的所有硬件环境。

sdhci_free_host则用于从sdhci core中卸载一个sdhci_host,对应的mmc_host也会从mmc core中被卸载。

    原型:int sdhci_add_host(struct sdhci_host *host);
原型:void sdhci_remove_host(struct sdhci_host *host, int dead);

四、接口代码说明

1、sdhci_alloc_host

struct sdhci_host *sdhci_alloc_host(struct device *dev,
size_t priv_size)
{
struct mmc_host *mmc;
struct sdhci_host *host; WARN_ON(dev == NULL); /* 实现mmc_host和sdhci_host的分配 */
mmc = mmc_alloc_host(sizeof(struct sdhci_host) + priv_size, dev); // 分配一个struct mmc_host
// 分配mmc_host的同时也分配了sizeof(struct sdhci_host) + priv_size的私有数据空间,这部分就是作为sdhci_host及其私有数据使用的。
// 具体参考《mmc core——host模块说明》
if (!mmc)
return ERR_PTR(-ENOMEM); /* 实现mmc_host和sdhci_host的关联操作 */
host = mmc_priv(mmc); // 将sdhci_host作为mmc_host的私有数据,mmc_host->private = sdhci_host
host->mmc = mmc; // 关联sdhci_host和mmc_host,sdhci_host->mmc = mmc_host /* sdhci_host的锁的初始化工作 */
spin_lock_init(&host->lock); // 初始化sdhci_host 的占有锁
mutex_init(&host->ios_mutex); // 初始化sdhci_host 设置io setting的互斥锁 return host; // 将struct sdhci_host 返回
}

综上,

mmc_host->private = sdhci_host
sdhci_host->mmc = mmc_host

2、sdhci_add_host

(0)底层传上来的sdhci_host中应该包含什么信息

  • sdhci的寄存器的映射过后的基地址(sdhci_host->ioaddr)
  • sdhci的癖好quirks、quirks2(sdhci_host->quirks,sdhci_host->quirks2)
  • sdhci的中断号(sdhci_host->irq)
  • host提供给sdhci core用来操作硬件的操作集(sdhci_host->ops)

(1)主要完成工作如下:

  • sdhci host复位

调用sdhci_reset

  • 读取该host的sdhci的信息(从sdhci相关寄存器中读取)并设置sdhci_host相关成员

    • 版本(sdhci_host->version) : 从SDHCI_HOST_VERSION寄存器中读取
    • 支持的属性 : 从SDHCI_CAPABILITIES、SDHCI_CAPABILITIES_1寄存器中读取
    • 标识(sdhci_host->version) : 根据sdhci_host->quirks和quirks2来设置
    • 支持的最大频率和倍频(sdhci_host->max_clk & sdhci_host->clk_mul)


      对应SDHCI_CAPABILITIES寄存器中的SDHCI_CLOCK_BASE_SHIFT位


      对应SDHCI_CAPABILITIES寄存器中的SDHCI_CLOCK_MUL_SHIFT位
    • sdhci使用的regulator(sdhci_host->vqmmc)


      从节点中的命名为”vmmc”的regulator属性中获取
    • card插入状态发生变化时调用的tasklet(sdhci_host->card_tasklet)


      设置为sdhci_tasklet_card
    • 请求处理完成时调用的tasklet(sdhci_host->finish_tasklet)


      设置为sdhci_tasklet_finish
    • 请求的处理超时定时器(sdhci_host->timer)


      设置为sdhci_timeout_timer
    • qos处理的工作(sdhci_host->pm_qos_work)


      设置为sdhci_pm_qos_remove_work
  • 设置mmc_host的相关成员

    • 操作集(mmc_host->ops)


      设置为sdhci_ops,上面已经说明过了
    • 最大频率(mmc_host->f_max)


      用sdhci_host->max_clk的值来设置
    • host的属性(mmc_host->caps & mmc_host->caps2)


      通过sdhci_host->quirks和quirks2、以及SDHCI_CAPABILITIES、SDHCI_CAPABILITIES_1寄存器中的属性进行设置
    • 各个电压下的最大电流值(mmc_host->max_current_330 & mmc_host->max_current_300 & mmc_host->max_current_180)


      从SDHCI_MAX_CURRENT寄存器中读取
    • 可用电压(mmc->ocr_avail & mmc->ocr_avail_sdio & mmc->ocr_avail_sd & mmc->ocr_avail_mmc)


      从SDHCI_CAPABILITIES寄存器中的SDHCI_CAN_VDD_330、SDHCI_CAN_VDD_300、SDHCI_CAN_VDD_180位获取
    • 一些块和段size的设置
  • 中断的注册


    将sdhci_host的中断处理函数注册为sdhci_irq

  • sdhci host初始化


    调用sdhci_init

  • 注册mmc_host到mmc core中


    调用mmc_add_host

  • 使能card插入状态的检测


    调用sdhci_enable_card_detection

(2)代码如下:

int sdhci_add_host(struct sdhci_host *host)
{
// 以下变量要注意区分
// host是指要注册的sdhci host
// mmc是指要注册到mmc subsystem的host,封装在sdhci host中
struct mmc_host *mmc;
u32 caps[2] = {0, 0};
u32 max_current_caps;
unsigned int ocr_avail;
int ret; WARN_ON(host == NULL);
if (host == NULL)
return -EINVAL; mmc = host->mmc; // 获取struct mmc_host /* 执行复位操作 */
sdhci_reset(host, SDHCI_RESET_ALL);
// 执行reset操作,会调用到sdhci_host->ops->platform_reset_enter,msm并没有实现这个方法 /********************************* 获取sdhci信息并设置sdhci_host的相应成员***********************/
/* 获取sdhci controller版本号 */
host->version = sdhci_readw(host, SDHCI_HOST_VERSION);
host->version = (host->version & SDHCI_SPEC_VER_MASK) >> SDHCI_SPEC_VER_SHIFT;
// 获取sdhci host的硬件版本号 /* 获取sdhci controller支持的属性 */
caps[0] = (host->quirks & SDHCI_QUIRK_MISSING_CAPS) ? host->caps : sdhci_readl(host, SDHCI_CAPABILITIES);
// SDHCI_QUIRK_MISSING_CAPS:Controller is missing device caps. Use caps provided by host
// sdhci控制器没有devices属性的话,由底层host提供,否则,从sdhci controller的SDHCI_CAPABILITIES读取属性 if (host->version >= SDHCI_SPEC_300)
caps[1] = (host->quirks & SDHCI_QUIRK_MISSING_CAPS) ?host->caps1 : sdhci_readl(host, SDHCI_CAPABILITIES_1);
// 从sdhci controller的SDHCI_CAPABILITIES_1读取属性 /* 设置sdhci_host->flags中和DMA相关的flag */
if (host->quirks & SDHCI_QUIRK_FORCE_DMA)
host->flags |= SDHCI_USE_SDMA;
else if (!(caps[0] & SDHCI_CAN_DO_SDMA))
DBG("Controller doesn't have SDMA capability\n");
else
host->flags |= SDHCI_USE_SDMA;
// SDHCI_QUIRK_FORCE_DMA : Controller has bad caps bits, but really supports DMA
// 设置sdhci_host->flags中的SDHCI_USE_SDMA标识
//............................
if (host->flags & SDHCI_USE_ADMA) {
// sdhci_host ->adma_max_desc
// sdhci_host ->adma_desc_line_sz
// sdhci_host ->align_bytes
// sdhci_host ->adma_desc_sz
// sdhci_host ->align_buf_sz
// sdhci_host ->adma_desc
// sdhci_host ->align_buffer
} host->next_data.cookie = 1; /* 获取sdhci controller支持的最大频率以及倍频 */
if (host->version >= SDHCI_SPEC_300)
host->max_clk = (caps[0] & SDHCI_CLOCK_V3_BASE_MASK)
>> SDHCI_CLOCK_BASE_SHIFT; // 从sdhci controller的SDHCI_CLOCK_V3_BASE_MASK读取最大clock(单位是MHZ)
else
host->max_clk = (caps[0] & SDHCI_CLOCK_BASE_MASK)
>> SDHCI_CLOCK_BASE_SHIFT; host->max_clk *= 1000000;(转化为hz)
// 设置sdhci_host->max_clk
sdhci_update_power_policy(host, SDHCI_PERFORMANCE_MODE_INIT);
// 设置sdhci_host->power_policy为SDHCI_PERFORMANCE_MODE_INIT
if (host->max_clk == 0 || host->quirks & SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN) {
host->max_clk = host->ops->get_max_clock(host); // 调用sdhci_host->ops->get_max_clock获得最大时钟
} host->clk_mul = (caps[1] & SDHCI_CLOCK_MUL_MASK) >> SDHCI_CLOCK_MUL_SHIFT;
if (host->clk_mul)
host->clk_mul += 1;
// 设置sdhci_host->clk_mul,clock的倍频实行 /*************************** 以下对mmc_host和sdhci_host进行设置操作 ***************************/
/* 以下设置mmc_host,ops、f_max、f_min */
mmc->ops = &sdhci_ops; // 设置mmc_host的操作集为sdhci_ops
mmc->f_max = host->max_clk; // 设置最大时钟频率mmc_host->f_max
if (host->ops->get_min_clock)
mmc->f_min = host->ops->get_min_clock(host); // 调用sdhci_host->ops->get_min_clock获得最小时钟频率mmc_host->f_min host->timeout_clk = (caps[0] & SDHCI_TIMEOUT_CLK_MASK) >> SDHCI_TIMEOUT_CLK_SHIFT;
// 从sdhci controller的SDHCI_TIMEOUT_CLK_MASK读取最大timeout
// 设置到sdhci_host->timeout_clk
if (host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)
host->timeout_clk = mmc->f_max / 1000; if (!(host->quirks2 & SDHCI_QUIRK2_USE_MAX_DISCARD_SIZE))
mmc->max_discard_to = (1 << 27) / host->timeout_clk;
// 设置mmc_host->max_discard_to /* 设置mmc_host->caps,也就是属性 */
mmc->caps |= MMC_CAP_SDIO_IRQ | MMC_CAP_ERASE | MMC_CAP_CMD23;
if (!(host->quirks & SDHCI_QUIRK_FORCE_1_BIT_DATA))
mmc->caps |= MMC_CAP_4_BIT_DATA;
if (host->quirks2 & SDHCI_QUIRK2_HOST_NO_CMD23)
mmc->caps &= ~MMC_CAP_CMD23;
if (caps[0] & SDHCI_CAN_DO_HISPD)
mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) &&
!(host->mmc->caps & MMC_CAP_NONREMOVABLE) &&
(mmc_gpio_get_cd(host->mmc) < 0) &&
!(host->mmc->caps2 & MMC_CAP2_NONHOTPLUG))
mmc->caps |= MMC_CAP_NEEDS_POLL; /* 获取vqmmc regulater并使能 */
/* If vqmmc regulator and no 1.8V signalling, then there's no UHS */
host->vqmmc = regulator_get(mmc_dev(mmc), "vqmmc");
if (IS_ERR_OR_NULL(host->vqmmc)) {
....
} else {
ret = regulator_enable(host->vqmmc);
if (!regulator_is_supported_voltage(host->vqmmc, 1700000,1950000))
caps[1] &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_DDR50);
}
if (host->quirks2 & SDHCI_QUIRK2_NO_1_8_V)
caps[1] &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_DDR50); /* 设置mmc_host->caps和传输模式相关的属性 */
/* Any UHS-I mode in caps implies SDR12 and SDR25 support. */
if (caps[1] & (SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50))
mmc->caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25; /* SDR104 supports also implies SDR50 support */
if (caps[1] & SDHCI_SUPPORT_SDR104)
mmc->caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50;
else if (caps[1] & SDHCI_SUPPORT_SDR50)
mmc->caps |= MMC_CAP_UHS_SDR50; if (caps[1] & SDHCI_SUPPORT_DDR50)
mmc->caps |= MMC_CAP_UHS_DDR50; /* 设置sdhci_host->flags中和tuning相关的flag */
/* Does the host need tuning for SDR50? */
if (caps[1] & SDHCI_USE_SDR50_TUNING)
host->flags |= SDHCI_SDR50_NEEDS_TUNING;
/* Does the host need tuning for HS200? */
if (mmc->caps2 & MMC_CAP2_HS200)
host->flags |= SDHCI_HS200_NEEDS_TUNING;
/* Does the host need tuning for HS400? */
if (mmc->caps2 & MMC_CAP2_HS400)
host->flags |= SDHCI_HS400_NEEDS_TUNING; /* 设置mmc_host->caps和驱动类型相关的属性 */
/* Driver Type(s) (A, C, D) supported by the host */
if (caps[1] & SDHCI_DRIVER_TYPE_A)
mmc->caps |= MMC_CAP_DRIVER_TYPE_A;
if (caps[1] & SDHCI_DRIVER_TYPE_C)
mmc->caps |= MMC_CAP_DRIVER_TYPE_C;
if (caps[1] & SDHCI_DRIVER_TYPE_D)
mmc->caps |= MMC_CAP_DRIVER_TYPE_D; /* 获取sdhci controller的tuning计数(tuning_count 、tuning_mode )*/
host->tuning_count = (caps[1] & SDHCI_RETUNING_TIMER_COUNT_MASK) >>
SDHCI_RETUNING_TIMER_COUNT_SHIFT;
if (host->tuning_count)
host->tuning_count = 1 << (host->tuning_count - 1); host->tuning_mode = (caps[1] & SDHCI_RETUNING_MODE_MASK) >> SDHCI_RETUNING_MODE_SHIFT; ocr_avail = 0; /* 获取vmmc regulater,设置caps[0]支持的电压值 */
host->vmmc = regulator_get(mmc_dev(mmc), "vmmc");
#ifdef CONFIG_REGULATOR
/*
* Voltage range check makes sense only if regulator reports
* any voltage value.
*/
if (host->vmmc && regulator_get_voltage(host->vmmc) > 0) {
ret = regulator_is_supported_voltage(host->vmmc, 2700000,
3600000);
if ((ret <= 0) || (!(caps[0] & SDHCI_CAN_VDD_330)))
caps[0] &= ~SDHCI_CAN_VDD_330;
if ((ret <= 0) || (!(caps[0] & SDHCI_CAN_VDD_300)))
caps[0] &= ~SDHCI_CAN_VDD_300;
ret = regulator_is_supported_voltage(host->vmmc, 1700000,
1950000);
if ((ret <= 0) || (!(caps[0] & SDHCI_CAN_VDD_180)))
caps[0] &= ~SDHCI_CAN_VDD_180;
}
#endif /* CONFIG_REGULATOR */ /* 设置各个电压下的最大电流值(max_current_330、max_current_330 、max_current_180 )*/
/* 设置可用电压域 */
max_current_caps = sdhci_readl(host, SDHCI_MAX_CURRENT);
if (!max_current_caps && host->vmmc) {
u32 curr = regulator_get_current_limit(host->vmmc);
//....................
} if (caps[0] & SDHCI_CAN_VDD_330) {
ocr_avail |= MMC_VDD_32_33 | MMC_VDD_33_34; mmc->max_current_330 = ((max_current_caps &
SDHCI_MAX_CURRENT_330_MASK) >>
SDHCI_MAX_CURRENT_330_SHIFT) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
//.........
mmc->ocr_avail = ocr_avail;
mmc->ocr_avail_sdio = ocr_avail;
// ...... /*********************************** sdhci的初始化工作**************************************/
/* 初始化sdhci工作过程中会使用到的tasklet */
tasklet_init(&host->card_tasklet, sdhci_tasklet_card, (unsigned long)host); // host上发生card插入或者拔出时调用
tasklet_init(&host->finish_tasklet, sdhci_tasklet_finish, (unsigned long)host); // 完成一个request时调用 setup_timer(&host->timer, sdhci_timeout_timer, (unsigned long)host); // command的超时定时器 /* 初始化qos处理的工作 */
INIT_DELAYED_WORK(&host->pm_qos_work, sdhci_pm_qos_remove_work); /* 中断注册和使能 */
ret = request_irq(host->irq, sdhci_irq, IRQF_SHARED,mmc_hostname(mmc), host);
host->irq_enabled = true; /* 对该sdhci controller进行初始化 */
sdhci_init(host, 0); mmiowb();
/* sdhci关于qos的请求和操作的设置 */
if (host->host_qos[SDHCI_QOS_READ_WRITE].cpu_dma_latency_us) {
// .........
} /*********************************** 将mmc_host注册到mmc subsystem中 *******************************/
mmc_add_host(mmc); /*********************************** 开始使能sdhci和并且开始检测card状态******************************/
sdhci_enable_card_detection(host); return 0;
}

重点关注如下几个部分:

(1)sdhci_reset(host, SDHCI_RESET_ALL);
(2)mmc->ops = &sdhci_ops; // 设置mmc_host的操作集为sdhci_ops
(3)host->vmmc = regulator_get(mmc_dev(mmc), "vmmc");
(4)tasklet_init(&host->card_tasklet, sdhci_tasklet_card, (unsigned long)host); // host上发生card插入或者拔出时调用
(5)tasklet_init(&host->finish_tasklet, sdhci_tasklet_finish, (unsigned long)host); // 完成一个request时调用的tasklet
(6)ret = request_irq(host->irq, sdhci_irq, IRQF_SHARED,mmc_hostname(mmc), host);
(7)sdhci_init(host, 0); // 软初始化host
(8)sdhci_enable_card_detection(host); // 开始使能card插入状态的检测

五、sdhci core内部代码简单说明

1、sdhci_reset & sdhci_init & sdhci_enable_card_detection

  • sdhci_reset


    由sdhci core内部调用,用于复位host。
  • sdhci_init


    由sdhci core内部调用,用于初始化host
  • sdhci_enable_card_detection


    由sdhci core内部调用,使能card插入状态的检测,主要是设置SDHCI_INT_ENABLE、SDHCI_SIGNAL_ENABLE寄存器
static irqreturn_t sdhci_irq(int irq, void *dev_id)
{
irqreturn_t result;
struct sdhci_host *host = dev_id;
u32 intmask, unexpected = 0;
int cardint = 0, max_loops = 16; spin_lock(&host->lock); /* 从SDHCI_INT_STATUS寄存器中读取中断状态 */
intmask = sdhci_readl(host, SDHCI_INT_STATUS); // 从SDHCI_INT_STATUS寄存器中读取中断状态 /* 确认是否有中断产生 */
if (!intmask || intmask == 0xffffffff) {
result = IRQ_NONE;
goto out;
} again:
DBG("*** %s got interrupt: 0x%08x\n",
mmc_hostname(host->mmc), intmask); /* 以下是对card插入或者拔出的中断进行处理 */
if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
u32 present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
sdhci_mask_irqs(host, present ? SDHCI_INT_CARD_INSERT :
SDHCI_INT_CARD_REMOVE);
sdhci_unmask_irqs(host, present ? SDHCI_INT_CARD_REMOVE :
SDHCI_INT_CARD_INSERT); sdhci_writel(host, intmask & (SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE), SDHCI_INT_STATUS); // 重置这两个中断位
intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE);
tasklet_schedule(&host->card_tasklet); // 执行host->card_tasklet,也就是sdhci_tasklet_card进行处理,后面说明
} /* 以下是sdhci处理命令产生的中断进行处理,不一定是出错 */
if (intmask & SDHCI_INT_CMD_MASK) {
if (intmask & SDHCI_INT_AUTO_CMD_ERR)
host->auto_cmd_err_sts = sdhci_readw(host,
SDHCI_AUTO_CMD_ERR);
sdhci_writel(host, intmask & SDHCI_INT_CMD_MASK,
SDHCI_INT_STATUS);
if ((host->quirks2 & SDHCI_QUIRK2_SLOW_INT_CLR) &&
(host->clock <= 400000))
udelay(40);
sdhci_cmd_irq(host, intmask & SDHCI_INT_CMD_MASK); // 在sdhci_cmd_irq中会执行host->finish_tasklet, 也就是sdhci_tasklet_finish来通知上层。后面说明。
} /* 以下是sdhci处理数据产生的中断进行处理,不一定是出错 */
if (intmask & SDHCI_INT_DATA_MASK) {
sdhci_writel(host, intmask & SDHCI_INT_DATA_MASK,
SDHCI_INT_STATUS);
if ((host->quirks2 & SDHCI_QUIRK2_SLOW_INT_CLR) &&
(host->clock <= 400000))
udelay(40);
sdhci_data_irq(host, intmask & SDHCI_INT_DATA_MASK); // 在sdhci_data_irq中会执行host->finish_tasklet, 也就是sdhci_tasklet_finish来通知上层。
} intmask &= ~(SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK); intmask &= ~SDHCI_INT_ERROR; /* 以下是对总线电源状态发生变化的中断的处理 */
if (intmask & SDHCI_INT_BUS_POWER) {
pr_err("%s: Card is consuming too much power!\n",
mmc_hostname(host->mmc));
sdhci_writel(host, SDHCI_INT_BUS_POWER, SDHCI_INT_STATUS);
} intmask &= ~SDHCI_INT_BUS_POWER; if (intmask & SDHCI_INT_CARD_INT)
cardint = 1; intmask &= ~SDHCI_INT_CARD_INT; if (intmask) {
unexpected |= intmask;
sdhci_writel(host, intmask, SDHCI_INT_STATUS);
} result = IRQ_HANDLED; /* 可能不止有其他事件导致中断的产生,重复检测 */
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
if (intmask && --max_loops)
goto again;
out:
spin_unlock(&host->lock);
return result;
}

3、sdhci_tasklet_card

  • 简单流程说明:

    • 当进行卡插入或者拔出的时候,sdhci controller(硬件)会检测到其状态发生变化
    • sdhci controller(硬件)会设置中断状态寄存器中SDHCI_INT_CARD_INSERT或者SDHCI_INT_CARD_REMOVE位
    • sdhci controller(硬件)触发中段
    • sdhci core中的中断处理函数sdhci_irq被调用(软件)
    • sdhci_irq(软件)去判断出中断状态寄存器中SDHCI_INT_CARD_INSERT或者SDHCI_INT_CARD_REMOVE位被设置
    • sdhci_irq执行host->card_tasklet,也就是我们这里的sdhci_tasklet_card进行相应处理。
  • sdhci_tasklet_card实现如下:
static void sdhci_tasklet_card(unsigned long param)
{
struct sdhci_host *host = (struct sdhci_host*)param; // 提取sdhci_host结构体
sdhci_card_event(host->mmc); // 发送事件,如果此时有mmc_request正在处理,则会复位数据线和命令线,终止mmc_request处理
mmc_detect_change(host->mmc, msecs_to_jiffies(200));
// 调用mmc_detect_change通知mmc core卡槽状态发生了变化,剩下的就是mmc core的工作了
// mmc_detect_change实现具体参考《mmc core主模块说明》
}

4、sdhci_tasklet_finish

static void sdhci_tasklet_finish(unsigned long param)
{
//......过滤掉前面一些根据情况决定的复位操作
mmc_request_done(host->mmc, mrq);
// 调用mmc_request_done来通知mmc core 说mrq这个mmc request已经处理完成,至于处理完成的结果由上层自己解决
// mmc_request_done实现具体参考《mmc core主模块说明》
sdhci_runtime_pm_put(host);
}

5、struct mmc_host_ops sdhci_ops各个方法简单说明

static const struct mmc_host_ops sdhci_ops = {
// post_req和pre_req是为了实现异步请求处理而设置的
// 异步请求处理就是指,当另外一个异步请求还没有处理完成的时候,可以先准备另外一个异步请求而不必等待
// 具体参考《mmc core主模块》
.pre_req = sdhci_pre_req,
.post_req = sdhci_post_req,
.request = sdhci_request, // host处理mmc请求的方法,在mmc_start_request中会调用
.set_ios = sdhci_set_ios, // 设置host的总线的io setting
.get_cd = sdhci_get_cd, // 检测host的卡槽中card的插入状态
.get_ro = sdhci_get_ro, // 获取host上的card的读写属性
.hw_reset = sdhci_hw_reset, // 硬件复位
.enable_sdio_irq = sdhci_enable_sdio_irq,
.start_signal_voltage_switch = sdhci_start_signal_voltage_switch, // 切换信号电压的方法
.execute_tuning = sdhci_execute_tuning, // 执行tuning操作,为card选择一个合适的采样点
.card_event = sdhci_card_event,
.card_busy = sdhci_card_busy, // 用于检测card是否处于busy状态
.enable = sdhci_enable, // 使能host,当host被占用时(第一次调用mmc_claim_host)调用
.disable = sdhci_disable, // 禁用host,当host被释放时(第一次调用mmc_release_host)调用
.stop_request = sdhci_stop_request, // 停止请求处理的方法
.get_xfer_remain = sdhci_get_xfer_remain,
.notify_load = sdhci_notify_load,
};

最新文章

  1. C# 知识特性 Attribute
  2. 设计模式(二)简单工厂模式(Simple Factory Pattern)
  3. [TCPIP] 传输控制协议 Note
  4. log4j写入数据库
  5. [Json.net]忽略不需要的字段
  6. xmlunit
  7. spring boot 初试,springboot入门,springboot helloworld例子
  8. Android开发规范——命名 (转)
  9. mysql大数据导出导入
  10. [Redux] Adding React Router to the Project
  11. 关于安装第三方模块和PILLOW
  12. HDU 5823 color II
  13. gps 经纬度 转换实际距离
  14. PHP7CMS 无条件前台GETSHELL
  15. 怎么取cxgrid某一列的合计值
  16. HTTPS SSL/TLS协议
  17. puppet 用户和组资源管理
  18. js闭包的作用
  19. Snmp学习总结(六)——linux下安装和配置SNMP
  20. java-nio之zero copy深入分析

热门文章

  1. RAID5的创建(5块磁盘,三块做raid,两块做备份)
  2. linux下查看程序占用多少内存
  3. 【Spring AOP】AOP核心概念(二)
  4. luoguP4248 [AHOI2013]差异
  5. 为什么MySQL数据库要用B+树存储索引?
  6. POJ3104Drying(二分)
  7. 【BZOJ3600】没有人的算术(替罪羊树+线段树)
  8. Win10 企业版ltsc 无法访问samba网络共享问题及解决!(转)
  9. windows10 启动安卓模拟器会蓝屏的解决方案
  10. docker安装kafka