/**
题目:H - Power of Integer
链接:https://vjudge.net/contest/152887#problem/H
题意:给出区间[a, b],问你区间[a, b]所有数的幂的和是多少,定义一个
数的幂是这样的:对于一个数y,存在一个最小的数x,有一个最大的k,使得x^k=y,
那k就是y的幂 思路:看到这种题目容易想到[2,b]-[2,a-1]的做法;
先对[2,b]考虑,因为[2,a-1]同它做法是一样的。一开始我想的是先求x^2<=b 求出最大的满足条件的x,
然后可以计算有多少个幂为2的数在该范围[2,x]内的数的2次方都在[2,b]内。然后再计算x^3<=b的最大的x;然后x^4,x^5,,,,到找不到为止。
但是这样做无法处理重复的情况。
我当时想了很久还是想不到,实在想不到。问了志轩的想法。
他说从高位到低位处理。
假设我求x^12<=b;那么得出一个区间[2,x]范围内的数。对其中某一个数xx^12<=b而这个xx^12是可以分解为(xx^6)^2,(xx^4)^3,(xx^3)^4,(xx^2)^6,(xx^12)^1;
这些可以划分的次方是原来数的约数,不包括本身12;这样就可以提前减去他们产生的贡献。随着幂减少,之后加到他们也不会有影响,因为已经减过了。 代码没有ac,精度问题。
最下面那份代码ac了。 另外做法:利用计算器预处理所有x^2<=10^18,x^3<=10^18,x^4<=10^18....的x值。然后计算的时候就可以控制好,防止溢出了。 */
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
const double eps = 1e-;
const int maxn = 1e9+;
int sum[];
ll a, b;
//预处理每个数的约数和(不包括自身)
void getSum()
{
sum[] = ;
for(int i = ; i <= ; i++){
for(int j = ; j* <= i; j++){
if(i%j==) sum[i]+=j;
}
}
//test
//printf("%d %d\n",sum[8],sum[9]);
}
//判断是否满足x^y<=b
bool judge(ll x,int y,ll b)
{
ll res = ;
for(int i = ; i <= y; i++){
if(log(res)+log(x)-log(b)>=eps) return false;
res *= x;
}
//return true;
return res<=b;
}
//计算[2,x]范围内的power sum。
ll solve(ll y)
{
if(y<) return ;
//求x^i<=y的x值。
ll ans = ;
for(int i = ; i >= ; i--){
ll mas = ;
ll lo = , hi = b, m;
while(lo<=hi){
m = (lo+hi)/;
if(judge(m,i,y)){//满足条件
lo = m+; mas = max(mas,m);
}else
{
hi = m-;
}
}
//if(mas==1) continue;
//cout<<"mas = "<<mas<<endl;
//cout<<"i = "<<i<<endl;
ans += 1LL*(i-sum[i])*(mas-);
}
return ans;
}
int main()
{
getSum();
while(scanf("%lld%lld",&a,&b)==&&a){
// ll p = 1;
// a = b = p<<59;///
// b+=2;
//cout<<"a = "<<a<<endl;
//cout<<"solve(b) = "<<solve(b)<<endl;
//cout<<"solve(a-1) = "<<solve(a-1)<<endl;
printf("%lld\n",solve(b)-solve(a-));
}
return ;
} ///from zzx
/*
from zzx
思路:由于要找的幂尽量大,所以我们要从高到低来枚举计算幂的贡献
对于幂k 二分一下范围[x,y] 满足a <= x ^ k <= y ^ k <= b
现在就是要去重了
举个例子
2^4 等于16 4^2也等于16 所以算完k为4的贡献后(假设为d),要除掉对k的所有约数的影响(显然影响也为d)
ps: 被 long long 相乘时判溢出 坑了几波,还是取对数靠谱一些
*/
/*
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const double eps = 1e-6;
LL a, b,cnt[64];
bool check1(LL x,int y)
{
LL res = 1;
for(int i = 1; i <= y; i++)
{
if(log(res) + log(x) - log(a) >= eps) return true;
res *= x;
}
return res >= a;
}
LL FindL(int y)
{
LL l = 1,r = b,ans = b;
while(l <= r)
{
LL mid = (l + r) / 2;
if(check1(mid,y)) ans = min(ans,mid),r = mid - 1;
else l = mid + 1;
}
return ans;
}
bool check2(LL x,int y)
{
LL res = 1;
for(int i = 1; i <= y; i++)
{
if(log(res) +log(x) - log(b) > eps) return false;
res *= x;
}
return res <= b;
}
LL FindR(int y)
{
LL l = 1,r = b,ans = 1;
while(l <= r)
{
LL mid = (l + r) / 2;
if(check2(mid,y)) ans = max(ans,mid),l = mid + 1;
else r = mid - 1;
}
return ans;
} int main()
{
while(scanf("%lld%lld",&a,&b)&&(a+b))
{
memset(cnt,0,sizeof(cnt));
LL ans = 0;
for(int i = 63; i >= 1; i--)
{
LL x = FindL(i), y = FindR(i);
LL d = max(y-x+1,0LL);
if(d)
{
d -= cnt[i];
ans += i * d;
if(d)
{
for(int k = 1; k * k <= i; k++)
{
if(i % k == 0){
cnt[k] += d;
if(i/k!=k) cnt[i/k]+=d;
}
}
}
}
}
printf("%lld\n",ans);
}
return 0;
}
*/

最新文章

  1. FusionChart 水印破解方法(代码版)
  2. Eclipse中的Link with Editor功能是如何实现
  3. 示波器trigger的使用方法
  4. Dynamics AX 2012 R2 为运行失败的批处理任务设置预警
  5. js知识体系的梳理一
  6. 【重走Android之路】【开篇】序
  7. busybox filesystem ifup
  8. js前台与后台数据交互-前台调后台
  9. C-C Radar Installation 解题报告
  10. C语言拾遗--static
  11. HBase性能优化方法总结(一):表的设计
  12. 零件库管理信息系统设计--part03:管理员登录部分设计
  13. ES入门REST API
  14. 《2013传智播客视频》-wmv,avi,mp4.目录
  15. Oracle记录-Linux JDK与Oracle profile环境配置
  16. mac上mysql root密码忘记或权限错误的解决办法
  17. 关于解决java.lang.ClassNotFoundException: org.springframework.web.context.ContextLoader问题
  18. Oracle EBS AP 取消发票
  19. leetcode 第三大的数
  20. SQL脚本修改表结构

热门文章

  1. mysql获取分类数量
  2. 调试SQLSERVER (二)使用Windbg调试SQLSERVER的环境设置 ------符号文件
  3. Linux下打包命令tar
  4. JavaScript字符串api简单说明
  5. 配置kubernetes UI图形化界面
  6. RMAN 备份恢复 删除表空间后控制文件丢失
  7. Memcached网络模型
  8. VS2010中使用命令行參数
  9. Linux Bash严重漏洞修复方法
  10. Windows利用命令行快速清除以及建立密码