Java语言的关键字,当它用来修饰一个方法或者一个代码块的时候,能够保证在同一时刻最多只有一个线程执行该段代码。

一、当两个并发线程访问同一个对象object中的这个synchronized(this)同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。

二、然而,当一个线程访问object的一个synchronized(this)同步代码块时,另一个线程仍然可以访问该object中的非synchronized(this)同步代码块。

三、尤其关键的是,当一个线程访问object的一个synchronized(this)同步代码块时,其他线程对object中所有其它synchronized(this)同步代码块的访问将被阻塞。

四、第三个例子同样适用其它同步代码块。也就是说,当一个线程访问object的一个synchronized(this)同步代码块时,它就获得了这个object的对象锁。结果,其它线程对该object对象所有同步代码部分的访问都被暂时阻塞。

五、以上规则对其它对象锁同样适用.

举例说明: 

     一、当两个并发线程访问同一个对象object中的这个synchronized(this)同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。

package ths;

public class Thread1 implements Runnable { 

     public void run() { 

          synchronized(this) { 

               for (int i = 0; i < 5; i++) { 

                    System.out.println(Thread.currentThread().getName() + " synchronized loop " + i); 


               } 

          } 

     } 

     public static void main(String[] args) { 

          Thread1 t1 = new Thread1(); 

          Thread ta = new Thread(t1, "A"); 

          Thread tb = new Thread(t1, "B"); 

          ta.start(); 

          tb.start(); 

     }

}

结果: 

     A synchronized loop 0 

     A synchronized loop 1 

     A synchronized loop 2 

     A synchronized loop 3 

     A synchronized loop 4 

     B synchronized loop 0 

     B synchronized loop 1 

     B synchronized loop 2 

     B synchronized loop 3 

     B synchronized loop 4

二、然而,当一个线程访问object的一个synchronized(this)同步代码块时,另一个线程仍然可以访问该object中的非synchronized(this)同步代码块。

package ths;

public class Thread2 { 

     public void m4t1() { 

          synchronized(this) { 

               int i = 5; 

               while( i-- > 0) { 

                    System.out.println(Thread.currentThread().getName() + " : " + i); 


                    try { 

                         Thread.sleep(500); 

                    } catch (InterruptedException ie) { 

                    } 

               } 

          } 

     } 

     public void m4t2() { 

          int i = 5; 

          while( i-- > 0) { 

               System.out.println(Thread.currentThread().getName() + " : " + i); 


               try { 

                    Thread.sleep(500); 

               } catch (InterruptedException ie) { 

               } 

          } 

     } 

     public static void main(String[] args) { 

          final Thread2 myt2 = new Thread2(); 

          Thread t1 = new Thread(  new Runnable() {  public void run() {  myt2.m4t1();  }  }, "t1"  ); 


          Thread t2 = new Thread(  new Runnable() {  public void run() { myt2.m4t2();   }  }, "t2"  ); 


          t1.start(); 

          t2.start(); 

     }

}

结果: 

     t1 : 4 

     t2 : 4 

     t1 : 3 

     t2 : 3 

     t1 : 2 

     t2 : 2 

     t1 : 1 

     t2 : 1 

     t1 : 0 

     t2 : 0

三、尤其关键的是,当一个线程访问object的一个synchronized(this)同步代码块时,其他线程对object中所有其它synchronized(this)同步代码块的访问将被阻塞。

//修改Thread2.m4t2()方法: 

     public void m4t2() { 

          synchronized(this) { 

               int i = 5; 

               while( i-- > 0) { 

                    System.out.println(Thread.currentThread().getName() + " : " + i); 


                    try { 

                         Thread.sleep(500); 

                    } catch (InterruptedException ie) { 

                    } 

               } 

          }

}

结果:

t1 : 4 

     t1 : 3 

     t1 : 2 

     t1 : 1 

     t1 : 0 

     t2 : 4 

     t2 : 3 

     t2 : 2 

     t2 : 1 

     t2 : 0

四、第三个例子同样适用其它同步代码块。也就是说,当一个线程访问object的一个synchronized(this)同步代码块时,它就获得了这个object的对象锁。结果,其它线程对该object对象所有同步代码部分的访问都被暂时阻塞。

//修改Thread2.m4t2()方法如下:

public synchronized void m4t2() { 

          int i = 5; 

          while( i-- > 0) { 

               System.out.println(Thread.currentThread().getName() + " : " + i); 


               try { 

                    Thread.sleep(500); 

               } catch (InterruptedException ie) { 

               } 

          } 

     }

结果: 

     t1 : 4 

     t1 : 3 

     t1 : 2 

     t1 : 1 

     t1 : 0 

     t2 : 4 

     t2 : 3 

     t2 : 2 

     t2 : 1 

     t2 : 0

五、以上规则对其它对象锁同样适用:

package ths;

public class Thread3 {

     class Inner {

          private void m4t1() {

               int i = 5;

               while(i-- > 0) {

                    System.out.println(Thread.currentThread().getName() + " : Inner.m4t1()=" + i);


                    try {

                         Thread.sleep(500);

                    } catch(InterruptedException ie) {

                    }

               }

          }

          private void m4t2() {

               int i = 5;

               while(i-- > 0) {

                    System.out.println(Thread.currentThread().getName() + " : Inner.m4t2()=" + i);


                    try {

                         Thread.sleep(500);

                    } catch(InterruptedException ie) {

                    }

               }

          }

     }

     private void m4t1(Inner inner) {

          synchronized(inner) { //使用对象锁

          inner.m4t1();

     }

     private void m4t2(Inner inner) {

          inner.m4t2();

     }

     public static void main(String[] args) {

          final Thread3 myt3 = new Thread3();

          final Inner inner = myt3.new Inner();

          Thread t1 = new Thread( new Runnable() {public void run() { myt3.m4t1(inner);} }, "t1");


     Thread t2 = new Thread( new Runnable() {public void run() { myt3.m4t2(inner);} }, "t2");


     t1.start();

     t2.start();

  }

}

结果:

尽管线程t1获得了对Inner的对象锁,但由于线程t2访问的是同一个Inner中的非同步部分。所以两个线程互不干扰。

t1 : Inner.m4t1()=4 

     t2 : Inner.m4t2()=4 

     t1 : Inner.m4t1()=3 

     t2 : Inner.m4t2()=3 

     t1 : Inner.m4t1()=2 

     t2 : Inner.m4t2()=2 

     t1 : Inner.m4t1()=1 

     t2 : Inner.m4t2()=1 

     t1 : Inner.m4t1()=0 

     t2 : Inner.m4t2()=0

现在在Inner.m4t2()前面加上synchronized:

private synchronized void m4t2() { 

          int i = 5; 

          while(i-- > 0) { 

               System.out.println(Thread.currentThread().getName() + " : Inner.m4t2()=" + i); 


               try { 

                    Thread.sleep(500); 

               } catch(InterruptedException ie) { 

               } 

          } 

     }

结果:

尽管线程t1与t2访问了同一个Inner对象中两个毫不相关的部分,但因为t1先获得了对Inner的对象锁,所以t2对Inner.m4t2()的访问也被阻塞,因为m4t2()是Inner中的一个同步方法。

t1 : Inner.m4t1()=4 

     t1 : Inner.m4t1()=3 

     t1 : Inner.m4t1()=2 

     t1 : Inner.m4t1()=1 

     t1 : Inner.m4t1()=0 

     t2 : Inner.m4t2()=4 

     t2 : Inner.m4t2()=3 

     t2 : Inner.m4t2()=2 

     t2 : Inner.m4t2()=1 

     t2 : Inner.m4t2()=0

第二篇:

synchronized 关键字,它包括两种用法:synchronized 方法和 synchronized 块。 

1. synchronized 方法:通过在方法声明中加入 synchronized关键字来声明 synchronized 方法。如: 

public synchronized void accessVal(int newVal); 

synchronized 方法控制对类成员变量的访问:每个类实例对应一把锁,每个 synchronized 方法都必须获得调用该方法的类实例的锁方能

执行,否则所属线程阻塞,方法一旦执行,就独占该锁,直到从该方法返回时才将锁释放,此后被阻塞的线程方能获得该锁,重新进入可执行

状态。这种机制确保了同一时刻对于每一个类实例,其所有声明为 synchronized 的成员函数中至多只有一个处于可执行状态(因为至多只有

一个能够获得该类实例对应的锁),从而有效避免了类成员变量的访问冲突(只要所有可能访问类成员变量的方法均被声明为 synchronized)

。 

在 Java 中,不光是类实例,每一个类也对应一把锁,这样我们也可将类的静态成员函数声明为 synchronized ,以控制其对类的静态成

员变量的访问。 

synchronized 方法的缺陷:若将一个大的方法声明为synchronized 将会大大影响效率,典型地,若将线程类的方法 run() 声明为

synchronized ,由于在线程的整个生命期内它一直在运行,因此将导致它对本类任何 synchronized 方法的调用都永远不会成功。当然我们可

以通过将访问类成员变量的代码放到专门的方法中,将其声明为 synchronized ,并在主方法中调用来解决这一问题,但是 Java 为我们提供

了更好的解决办法,那就是 synchronized 块。 

2. synchronized 块:通过 synchronized关键字来声明synchronized 块。语法如下: 

synchronized(syncObject) { 

//允许访问控制的代码 

}

最新文章

  1. x01.os.19: linux 0.0
  2. Android Fragment 你应该知道的一切
  3. Windows 8.1 新增控件之 MenuFlyout
  4. python作为一种胶水和c/c++
  5. 通过反射封装JDBC
  6. 文件相关操作工具类——FileUtils.java
  7. [原创]Devexpress XtraReports 系列 5 创建交叉报表
  8. WCF-学习笔记概述之计算服务(1)
  9. 完整cocos2d-x编译Andriod应用过程
  10. xcode6下使用autolayout+sizeclass实践
  11. C# Main函数详解
  12. 机器学习——交叉验证,GridSearchCV,岭回归
  13. .Net Core实践1
  14. [再寄小读者之数学篇](2014-06-20 Beta 函数)
  15. python 提取字符串中的指定字符 正则表达式
  16. React 避免重渲染
  17. 垃圾收集器(GC)
  18. Python 浅谈编程规范和软件开发目录规范的重要性
  19. Ubuntu 13.04下构建Qt5开发环境
  20. ES Route

热门文章

  1. GDI绘制Winform工作流组件、具有独立图层的增删处理、防PPT效果
  2. Centos上安装MongoDB4.X
  3. [noi39]子图
  4. 在spring启动后执行代码
  5. 『与善仁』Appium基础 — 12、Appium的安装详解
  6. YAPI接口自动鉴权功能部署详解
  7. 自助分析工具Power BI的简介和应用
  8. 【7】基于NGS检测体系变异解读和数据库介绍
  9. 【R方差分析】蛋白质表达量多组比较
  10. nginx 文件目录页面