Part III 中值定理与一元微分学应用

1. 中值定理

费马定理

\[设f(x)在x=x_{0}处 \begin{cases}
1) & 可导 \\
2) & 取极值
\end{cases} \Rightarrow {f}'(x_{0})=0
\]

罗尔定理

\[设f(x)满足以下三个条件 \begin{cases}
1) & [a,b]连续 \\
2) & (a,b)可导 \\
3) & f(a)=f(b)
\end{cases} ,则\exists \xi \in (a,b),使得 {f}'(\xi)=0
\]

拉格朗日中值定理

\[设f(x)满足以下两个条件 \begin{cases}
1) & [a,b]连续 \\
2) & (a,b)内可导
\end{cases} ,则\exists \xi \in (a,b),使得 {f}'(\xi)=\frac{f(b)-f(a)}{b-a}
\]

柯西中值定理

\[设f(x),g(x)满足 \begin{cases}
1) & [a,b]连续 \\
2) & (a,b)内可导 \\
3) & {g}'(x)\neq0
\end{cases} ,则\exists \xi \in (a,b),使得 \frac{{f}'(\xi)}{{g}'(x)}=\frac{f(b)-f(a)}{g(b)-g(a)}
\]

柯西、拉格朗日、罗尔三者间的关系

柯西中值定理 → 拉格朗日中值定理 → 罗尔定理。But 拉格朗日中值定理 !→ 柯西中值定理

涉及f(x)的应用,可能需要用到的定理

有界性定理,最值定理,介值定理,零点定理

罗尔定理的应用范式

\(f(a)=f(b) \Rightarrow {f}'(\xi)=0\)

罗尔定理的关键,以及达成这个关键的两个途径

关键:\(F(a)=F(b) \Rightarrow {F}'(\xi)=0\)

两个途径:

  1. 求导公式逆用法
  2. 积分还原法
    1. 将欲证结论中的\(\xi 改为 x\)
    2. 积分,令c=0
    3. 移项,使等式一端为0,则另一端记为F(x)

2. 单调性与极值

导数的几何应用有哪些

三点两性一线:极值点、最值点、拐点;单调性,凹凸性;渐近线

极值的定义需要注意的地方

必须是双侧定义,否则不考虑极值

广义极值

\(\exists x_{0}的某个邻域, \forall x\in U(x_{0}, \delta) ,都有f(x) \leq f(x_{0}),则x_{0}为f(x)的真正极大值点\)

狭义极值(真正极值)

\(\exists x_{0}的某个【去心】邻域, \forall x\in U(x_{0}, \delta) ,都有f(x) \leq f(x_{0}),则x_{0}为f(x)的真正极大值点\)

单调性与极值判别

  1. \(若{f}'(x)>0, \forall x \in I,则f(x)在I上单调递增;若{f}'(x)<0, \forall x \in I,则f(x)在I上单调递减;\)
  2. \[ 若f(x)在x= x_{0}处连续,在U(x_{0}, \delta)内可导,则\begin{cases}
    当x_{0} \in(x_{0}-\delta, x_{0})时, {f}'(x)<0,当x_{0}\in (x_{0}, x_{0}+\delta)时,{f}'(x)>0,\Rightarrow 极小 \\
    当x_{0} \in(x_{0}-\delta, x_{0})时, {f}'(x)>0,当x_{0}\in (x_{0}, x_{0}+\delta)时,{f}'(x)<0,\Rightarrow 极大 \\
    若{f}'(x)在(x_{0}-\delta, x_{0})与(x_{0}, x_{0}+\delta)内不变号 \Rightarrow 不是极值
    \end{cases}
    \]
  3. \(若f(x)在x=x_{0}处二阶可导,{f}'(x_{0})=0,{f}''(x_{0})>0 \Rightarrow 极小值;若f(x)在x=x_{0}处二阶可导,{f}'(x_{0})=0,{f}''(x_{0})<0 \Rightarrow 极大值\)

3. 零碎问题

函数的凹凸性

\[\forall x_1, x_2 \in I, 有:\begin{cases}
\frac{f(x_1)+f(x_2)}{2} > f(\frac{x_1+x_2}{2}) \Rightarrow f(x), 是凹曲线 \\
\frac{f(x_1)+f(x_2)}{2} < f(\frac{x_1+x_2}{2}) \Rightarrow f(x), 是凸曲线
\end{cases}
\]

函数拐点

连续曲线凹凸弧的分界点

拐点判别法

设f(x)在I上二阶可导

  1. \(
    \begin{cases}
    若{f}''(x_0)>0,\forall x\in I \Rightarrow f(x)是凹的 \\
    若{f}''(x_0)<0,\forall x\in I \Rightarrow f(x)是凸的
    \end{cases}
    \)
  2. \(若f(x)在x_0点的左右邻域{f}''(x)变号 \Rightarrow (x_0,f(x_0))为拐点\)

铅直渐近线

\(若\lim \limits_{x \to x_0^+(或x_0^-)}f(x)=\infty,则称x=x_0为f(x)的一条铅直渐进线\)

出现在:无定义点 || 开区间端点

水平渐近线

\(若\lim \limits_{x \to +\infty(或-\infty)}f(x)=A,则称y=A为f(x)的一条水平渐进线\)

斜渐近线

\(若\lim \limits_{x \to +\infty(或-\infty)} \frac{f(x)}{x}=a\neq0,且\lim \limits_{x \to +\infty(或-\infty)}[f(x)-ax]=b \exists,则称y=ax+b为f(x)的一条斜渐进线\)

曲率与曲率半径

  1. 曲率:\(k = \frac{|y''|}{(1+y^{'2})^{\frac{3}{2}}}\)
  2. 曲率半径:\(R = \frac{1}{k} = \frac{(1+y^{'2})^{\frac{3}{2}}}{|y''|}\)

弧微分

  1. 直角坐标系下的弧微分公式:\(L:\ y=f(x)\)
\[ds = \sqrt{(dx)^2 + (dy)^2}
= \sqrt{1 + {\frac{dy}{dx}^2}}dx
= \sqrt{1+f^{'2}(x)}dx
\]
  1. 参数方程下的弧微分公式:$ L:\ \begin{cases}

    x = \varphi(t) \

    y = \varphi(t)

    \end{cases}$
\[ds = \sqrt{(dx)^2 + (dy)^2}
= \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2}dt
= \sqrt{\varphi ^{'2}(t) = \varphi ^{'2}(t)}dt
\]

函数的最值的求法

  1. $

    对于函数f(x),在[a,b]上找出三类点\begin{cases}

    {f}'x=0 \Rightarrow x_0驻点 \

    {f}'(x)!\exists \Rightarrow不可导点 \

    端点a,b

    \end{cases}

    $

    \(比较f(x_0),f(x_1),f(a),f(b)大小取其最大(最小)值为最大(最小)值\)
  2. \(若在I上求出唯一极大(极小)值点,则由实际背景确定最大(小)值\)

最新文章

  1. .Net内置特性Attribute介绍
  2. 基于cmake编译安装MySQL-5.5
  3. sentinel
  4. JavaScript 中的算术运算
  5. WPF简单的口算案例
  6. mysql常用操作 mysql备份与恢复
  7. Tomjson - json 解析库
  8. &#39;k1&#39;: 大于66的所有值, &#39;k2&#39;: 小于66的所有值
  9. Mysql 根据时间戳按年月日分组统计
  10. Mysql的基本命令图
  11. pytest-allure-poco之allure全量详细用法
  12. 《深度探索C++对象模型》读书笔记(二)
  13. python里文件读写操作
  14. git 入门教程之初识git
  15. php的Allowed memory size of 134217728 bytes exhausted问题
  16. Chapter 3 Phenomenon——24
  17. PostgreSQL索引介绍
  18. SSRS 在订阅的时候,在头值中找到无效的字符。将不重新发送邮件
  19. windows挂载网络盘
  20. ThinkPHP项目笔记之RBAC(权限)下篇

热门文章

  1. Git配置文件与git config命令
  2. android 获取uri的正确文件路径的办法
  3. recyclerView DiffUtil使用
  4. Android 高级UI组件(三)
  5. Git上项目代码拉到本地方法
  6. oracle 当月日历的sql
  7. spring生成EntityManagerFactory的三种方式
  8. SpringCloud微服务服务间调用之OpenFeign介绍
  9. 『学了就忘』Linux启动引导与修复 — 72、Linux系统的修复模式(单用户模式)
  10. 【Spark】【RDD】初次学习RDD 笔记 汇总