设 $L=L(\xi_0,\xi_1,\cdots,\xi_n)$ 关于变量 $\xi_0>0,\xi_1,\cdots,\xi_n$ 为严格凸的. 证明函数 $$\bex M=\cfrac{1}{\xi_0}L(\xi_0,\xi_1,\cdots,\xi_n) \eex$$ 关于变量 $$\bex \eta_0=\cfrac{1}{\xi_0},\quad \xi_1=\cfrac{\xi_1}{\xi_0},\cdots,\eta_n=\cfrac{\xi_n}{\xi_0} \eex$$ 是严格凸的.

证明: 仅对 $n=1$ 的情形加以证明. 先给出 $$\bex M=\eta_0 L\sex{\cfrac{1}{\eta_0},\cfrac{\eta_1}{\eta_0}}. \eex$$ 于是 $$\beex \bea M_{\eta_0}&=L+\eta_0 \sez{L_{\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}}}\\ &=L-\cfrac{1}{\eta_0}L_{\xi_0} -\cfrac{\eta_1}{\eta_0}L_{\xi_1},\\ M_{\eta_1}&=\eta_0L_{\xi_1}\cfrac{1}{\eta_0} =L_{\xi_1}; \eea \eeex$$ $$\beex \bea M_{\eta_0\eta_1} &=L_{\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}}\\ &\quad+\cfrac{1}{\eta_0^2}L_{\xi_0}-\cfrac{1}{\eta_0}\sez{ L_{\xi_0\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_0\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}} }\\ &\quad+\cfrac{\eta_1}{\eta_0^2}L_{\xi_1} -\cfrac{\eta_1}{\eta_0^2} \sez{ L_{\xi_0\xi_1}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}} }\\ &=\cfrac{1}{\eta_0^3}\sex{ L_{\xi_0\xi_0} +2\eta_1L_{\xi_0\xi_1}+\eta_1^2L_{\xi_1\xi_1} }\\ &=\cfrac{1}{\eta_0^3} \sex{\ba{cc}1& \eta_1 \ea} \sex{\ba{cc} L_{\xi_0\xi_0}&L_{\xi_0\xi_1}\\ L_{\xi_0\xi_1}&L_{\xi_1\xi_1} \ea} \sex{\ba{cc} 1\\ \eta_1 \ea}\\ &>0, \eea \eeex$$ $$\beex \bea M_{\eta_0\eta_1} &=M_{\eta_1\eta_0}=L_{\xi_1\xi_0}\sex{-\cfrac{1}{\eta_0^2}} +L_{\xi_1\xi_1}\sex{-\cfrac{\eta_1}{\eta_0^2}}\\ &=-\cfrac{1}{\eta_0^2}\sex{L_{\xi_0\xi_1}+\eta_1 L_{\xi_1\xi_1}},\\ M_{\eta_1\eta_1}&=\cfrac{1}{\eta_0}L_{\xi_1\xi_1}; \eea \eeex$$ $$\beex \bea M_{\eta_0\eta_0}M_{\eta_1\eta_1}-M_{\eta_0\eta_1}^2 &=\cfrac{1}{\eta_0^4} \sex{L_{\xi_0\xi_0}+2\eta_1L_{\xi_0\xi_1}+\eta_1^2L_{\xi_1\xi_1}}L_{\xi_1\xi_1}\\ &\quad -\cfrac{1}{\eta_0^4} \sex{L_{\xi_0\xi_1}^2+2\eta_1L_{\xi_0\xi_1L_{\xi_1\xi_1} +\eta_1^2L_{\xi_1\xi_1}^2}}\\ &=\cfrac{1}{\eta_0^4}L_{\xi_0\xi_0}L_{\eta_1\eta_1}\\ &>0. \eea \eeex$$

最新文章

  1. JS中的各种类型转换规则(转)
  2. 进程 & 线程相关知识
  3. QM课程01-功能概述
  4. 九度OJ 1499 项目安排 -- 动态规划
  5. SQL常用命令浅析
  6. javascript 关于一周前一个月前的处理方法
  7. Dalvik虚拟机的启动过程分析
  8. iOS给model排序
  9. 多线程使用Lock实现生产者实现者代码
  10. SQLContext、HiveContext自定义函数注册
  11. KMP初步
  12. word模板导出的几种方式:第三种:标签替换(DocX组件读取与写入Word)
  13. TCP/IP四层模型讲解笔记
  14. IE浏览器兼容的处理方式之一,使用特殊的注释 <!--[if IE]> ....<![endif]-->
  15. Android软键盘遮挡布局问题;
  16. [转]微信小程序 c#后台支付结果回调
  17. 增量式PID的matlab实现
  18. square-and-multiply algorithm
  19. AndroidStudio添加Android源码
  20. 编写高质量代码改善C#程序的157个建议——建议114:MD5不再安全

热门文章

  1. 超哥笔记--linux准备知识(1)
  2. web框架开发-路由控制
  3. Sklearn中的回归和分类算法
  4. SpringCloud(2)服务消费者(rest+ribbon)
  5. java中内存分配
  6. PHP 5.0~5.6 各版本兼容性的 cURL 文件上传
  7. css 通配符选择器
  8. JAXB注解的使用详解
  9. Linux(Ubuntu)使用日记------自定义命令的使用
  10. Linux--虚拟环境