1:代码

下面是一个简单的能够发生死锁的代码:

#include <unistd.h>
#include <pthread.h>
#include <string.h> typedef struct
{
pthread_mutex_t mutex1;
pthread_mutex_t mutex2; int sequence1;
int sequence2;
}Counter; void* thread1(void* arg)
{
Counter *cc = (Counter *)arg; while ()
{
pthread_mutex_lock(&cc->mutex1);
++cc->sequence1;
sleep(); pthread_mutex_lock(&cc->mutex2);
++cc->sequence2; pthread_mutex_unlock(&cc->mutex2);
pthread_mutex_unlock(&cc->mutex1);
}
} void* thread2(void* arg)
{
Counter *cc = (Counter *)arg; while ()
{
pthread_mutex_lock(&cc->mutex2);
++cc->sequence2;
sleep(); pthread_mutex_lock(&cc->mutex1);
++cc->sequence1; pthread_mutex_unlock(&cc->mutex1);
pthread_mutex_unlock(&cc->mutex2);
}
} int main()
{
Counter pub_counter = {PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, , }; pthread_t tid[];
if (pthread_create(&tid[], NULL, &thread1, &pub_counter) != )
{
_exit();
}
if (pthread_create(&tid[], NULL, &thread2, &pub_counter) != )
{
_exit();
} pthread_join(tid[], NULL);
pthread_join(tid[], NULL); return ;
}

2:编译运行

编译时加上-g选项,以便能够得到符号对应的源码

gcc -o deadlock -g deadlock.c -pthread
./deadlock

3:pstack查看调用栈

使用pstack命令,可以查看正在运行的进程的调用栈:

# ps -ef|grep deadlock
root : pts/ :: ./deadlock
root : pts/ :: grep --color=auto deadlock # pstack
Thread (Thread 0x7f6093bf6700 (LWP )):
# 0x00007f6093fc61bd in __lll_lock_wait () from /lib64/libpthread.so.
# 0x00007f6093fc1d02 in _L_lock_791 () from /lib64/libpthread.so.
# 0x00007f6093fc1c08 in pthread_mutex_lock () from /lib64/libpthread.so.
# 0x00000000004007d8 in thread1 (arg=0x7fffad4cbeb0) at deadlock.c:
# 0x00007f6093fbfdc5 in start_thread () from /lib64/libpthread.so.
# 0x00007f6093cee76d in clone () from /lib64/libc.so.
Thread (Thread 0x7f60933f5700 (LWP )):
# 0x00007f6093fc61bd in __lll_lock_wait () from /lib64/libpthread.so.
# 0x00007f6093fc1d02 in _L_lock_791 () from /lib64/libpthread.so.
# 0x00007f6093fc1c08 in pthread_mutex_lock () from /lib64/libpthread.so.
# 0x0000000000400852 in thread2 (arg=0x7fffad4cbeb0) at deadlock.c:
# 0x00007f6093fbfdc5 in start_thread () from /lib64/libpthread.so.
# 0x00007f6093cee76d in clone () from /lib64/libc.so.
Thread (Thread 0x7f60943e1740 (LWP )):
# 0x00007f6093fc0ef7 in pthread_join () from /lib64/libpthread.so.
# 0x0000000000400908 in main () at deadlock.c:

多运行几次,发现每次的打印中,线程2和3都卡在__lll_lock_wait函数中,这就是一个明显的死锁发生的信号了。

4:gdb

4.1 attach到进程

使用gdb命令,attach到进程上,查看锁的状态:

# gdb attach
GNU gdb (GDB) Red Hat Enterprise Linux 7.6.-.el7
Copyright (C) Free Software Foundation, Inc.
License GPLv3+: GNU GPL version or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
attach: No such file or directory.
Attaching to process
Reading symbols from /root/devel/mycode/deadlock...done.
Reading symbols from /lib64/libpthread.so....(no debugging symbols found)...done.
[New LWP ]
[New LWP ]
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib64/libthread_db.so.1".
Loaded symbols for /lib64/libpthread.so.
Reading symbols from /lib64/libc.so....(no debugging symbols found)...done.
Loaded symbols for /lib64/libc.so.
Reading symbols from /lib64/ld-linux-x86-.so....(no debugging symbols found)...done.
Loaded symbols for /lib64/ld-linux-x86-.so.
0x00007f6093fc0ef7 in pthread_join () from /lib64/libpthread.so.
Missing separate debuginfos, use: debuginfo-install glibc-2.17-.el7_3..x86_64

4.2查看改进程当前有哪些线程:

(gdb) info thread
Id Target Id Frame
Thread 0x7f6093bf6700 (LWP ) "deadlock" 0x00007f6093fc61bd in __lll_lock_wait () from /lib64/libpthread.so.
Thread 0x7f60933f5700 (LWP ) "deadlock" 0x00007f6093fc61bd in __lll_lock_wait () from /lib64/libpthread.so.
* Thread 0x7f60943e1740 (LWP ) "deadlock" 0x00007f6093fc0ef7 in pthread_join () from /lib64/libpthread.so.

*说明当前正在线程1上,需要切换到线程2和线程3上,查看锁的状态。

先切换到线程2上,并打印调用栈:

(gdb) thread
[Switching to thread (Thread 0x7f60933f5700 (LWP 9869))]
# 0x00007f6093fc61bd in __lll_lock_wait () from /lib64/libpthread.so.
(gdb) bt
# 0x00007f6093fc61bd in __lll_lock_wait () from /lib64/libpthread.so.
# 0x00007f6093fc1d02 in _L_lock_791 () from /lib64/libpthread.so.
# 0x00007f6093fc1c08 in pthread_mutex_lock () from /lib64/libpthread.so.
# 0x0000000000400852 in thread2 (arg=0x7fffad4cbeb0) at deadlock.c:
# 0x00007f6093fbfdc5 in start_thread () from /lib64/libpthread.so.
# 0x00007f6093cee76d in clone () from /lib64/libc.so.

线程2的”PID”为9869。调用栈显示该线程正阻塞在pthread_mutex_lock上。尝试看一下锁的状态:

(gdb) p cc
No symbol "cc" in current context.
(gdb) frame
# 0x0000000000400852 in thread2 (arg=0x7fffad4cbeb0) at deadlock.c:
pthread_mutex_lock(&cc->mutex1);
(gdb) p cc
$ = (Counter *) 0x7fffad4cbeb0
(gdb) p cc->mutex1
$ = {__data = {__lock = , __count = , __owner = 9868, __nusers = , __kind = , __spins = , __list = {__prev = 0x0,
__next = 0x0}}, __size = "\002\000\000\000\000\000\000\000\214&\000\000\001", '\000' <repeats times>, __align = }
(gdb) p cc->mutex2
$ = {__data = {__lock = , __count = , __owner = 9869, __nusers = , __kind = , __spins = , __list = {__prev = 0x0,
__next = 0x0}}, __size = "\002\000\000\000\000\000\000\000\215&\000\000\001", '\000' <repeats times>, __align = }
(gdb) p cc->sequence1
$ =
(gdb) p cc->sequence2
$ =

因为当前正处于栈帧0上,也就是__lll_lock_wait函数中,因此尝试打印cc时,会报:No symbol "cc" in current context。因此,首先需要使用frame 3命令,切换到调用pthread_mutex_lock之前的栈帧,然后打印出cc中的各个属性。

可见,cc->mutex1当前被”PID”为9868的线程所持有,而cc->mutex2被”PID”为9869的线程,也就是当前线程所持有。

然后,切换到线程3上,然后查看调用栈以及锁的状态:

(gdb) thread
[Switching to thread (Thread 0x7f6093bf6700 (LWP ))]
# 0x00007f6093fc61bd in __lll_lock_wait () from /lib64/libpthread.so.
(gdb) bt
# 0x00007f6093fc61bd in __lll_lock_wait () from /lib64/libpthread.so.
# 0x00007f6093fc1d02 in _L_lock_791 () from /lib64/libpthread.so.
# 0x00007f6093fc1c08 in pthread_mutex_lock () from /lib64/libpthread.so.
# 0x00000000004007d8 in thread1 (arg=0x7fffad4cbeb0) at deadlock.c:
# 0x00007f6093fbfdc5 in start_thread () from /lib64/libpthread.so.
# 0x00007f6093cee76d in clone () from /lib64/libc.so.
(gdb) f 3

# 0x00000000004007d8 in thread1 (arg=0x7fffad4cbeb0) at deadlock.c:
pthread_mutex_lock(&cc->mutex2);
(gdb) p cc->mutex1
$ = {__data = {__lock = , __count = , __owner = 9868, __nusers = , __kind = , __spins = , __list = {__prev = 0x0,
__next = 0x0}}, __size = "\002\000\000\000\000\000\000\000\214&\000\000\001", '\000' <repeats times>, __align = }
(gdb) p cc->mutex2
$ = {__data = {__lock = , __count = , __owner = 9869, __nusers = , __kind = , __spins = , __list = {__prev = 0x0,
__next = 0x0}}, __size = "\002\000\000\000\000\000\000\000\215&\000\000\001", '\000' <repeats times>, __align = }
(gdb) p cc->sequence1
$ =
(gdb) p cc->sequence2
$ =

可见,线程3的”PID”为9868,它就是持有cc->mutex1的线程,而该线程所请求lock的cc->mutex2,目前正被”PID”为9869的线程持有,也就是线程2。

5:附注

gdb attach到进程上之后,进程的运行就停止了(不是死掉,只是停止运行),从而可以运行各种GDB命令,查看调用栈,内部变量等:

The first thing gdb does after arranging to debug the specified process is to stop it. You can examine and modify an attached process with all the gdb commands that are ordinarily available when you start processes with run. You can insert breakpoints; you can step and continue; you can modify storage. If you would rather the process continue running, you may use the continue command after attaching gdb to the process.

http://sourceware.org/gdb/onlinedocs/gdb/Attach.html

当使用GDB调试进程时,如果该进程收到了信号,对于不同的信号,GDB会有不同的动作。有些信号会使得GDB将进程停住,或者直接将信号传递给进程。可以使用info signals或info handle命令,查看GDB收到信号时采取的动作:

(gdb) info signals
Signal Stop Print Pass to program Description SIGHUP Yes Yes Yes Hangup
SIGINT Yes Yes No Interrupt
SIGQUIT Yes Yes Yes Quit
SIGILL Yes Yes Yes Illegal instruction
SIGTRAP Yes Yes No Trace/breakpoint trap
SIGABRT Yes Yes Yes Aborted
SIGEMT Yes Yes Yes Emulation trap
SIGFPE Yes Yes Yes Arithmetic exception
SIGKILL Yes Yes Yes Killed

可见,对于SIGINT和SIGTRAP信号,默认情况下GDB会停止进程的运行,并且不将信号传递给进程。因此,可以利用这两个信号,暂停进程的运行,打印调试信息,然后使用continue命令,使进程继续运行。

GDB has the ability to detect any occurrence of a signal in your program. You can tell GDB in advance what to do for each kind of signal.

Normally, GDB is set up to let the non-erroneous signals like SIGALRM be silently passed to your program (so as not to interfere with their role in the program’s functioning) but to stop your program immediately whenever an error signal happens. You can change these settings with the handle command.

info signals

info handle

Print a table of all the kinds of signals and how GDB has been told to handle each one. You can use this to see the signal numbers of all the defined types of signals.

info signals sig

Similar, but print information only about the specified signal number.

info handle is an alias for info signals.

catch signal [signal… | ‘all’]

Set a catchpoint for the indicated signals. See Set Catchpoints, for details about this command.

handle signal [keywords…]

Change the way GDB handles signal signal. The signal can be the number of a signal or its name (with or without the ‘SIG’ at the beginning); a list of signal numbers of the form ‘low-high’; or the word ‘all’, meaning all the known signals. Optional arguments keywords, described below, say what change to make.

The keywords allowed by the handle command can be abbreviated. Their full names are:

nostop

GDB should not stop your program when this signal happens. It may still print a message telling you that the signal has come in.

stop

GDB should stop your program when this signal happens. This implies the print keyword as well.

print

GDB should print a message when this signal happens.

noprint

GDB should not mention the occurrence of the signal at all. This implies the nostop keyword as well.

pass

noignore

GDB should allow your program to see this signal; your program can handle the signal, or else it may terminate if the signal is fatal and not handled. pass and noignore are synonyms.

nopass

ignore

GDB should not allow your program to see this signal. nopass and ignore are synonyms.

When a signal stops your program, the signal is not visible to the program until you continue. Your program sees the signal then, if pass is in effect for the signal in question at that time. In other words, after GDB reports a signal, you can use the handle command with pass or nopass to control whether your program sees that signal when you continue.

The default is set to nostop, noprint, pass for non-erroneous signals such as SIGALRM, SIGWINCH and SIGCHLD, and to stop, print, pass for the erroneous signals.

https://sourceware.org/gdb/current/onlinedocs/gdb/Signals.html#Signals

最新文章

  1. MAC 常用命令
  2. C# GUID转换成16位字符串或19位数字并确保唯一
  3. mnsday2t1
  4. background: url 背景图片加时间戳不显示图片
  5. Java 使用 Redis | 菜鸟教程
  6. Android TextView多行垂直滚动
  7. PHP安装libevent扩展
  8. 紧跟时代步伐,让我们拥抱MVC 3
  9. 使用WinINet和WinHTTP实现Http訪问
  10. docker 容器管理常用命令
  11. OCP-1Z0-051-题目解析-第1题
  12. quagga源码学习--BGP协议对等体连接tcp md5签名认证选项
  13. UNIX网络编程——基于UDP协议的网络程序
  14. window下编译jcef
  15. tarjan系列算法代码小结
  16. Shell 基础教程
  17. Python代码分行问题
  18. JavaScript修改DOM节点时,样式优先级的问题
  19. Linq基于两个属性的分组
  20. Error: Could not find gradle wrapper within Android SDK. Might need to update your Android SDK. Looked here: C:\Users\Administrator\AppData\Local\Android\sdk\tools\templates\gradle\wrapper

热门文章

  1. Coreutils - GNU core utilities
  2. LOJ 6042 跳蚤王国的宰相
  3. Leetcode221. Maximal Square最大正方形
  4. mac下更改MySQL的默认编码
  5. 彩色图像与二值图像(mask)点乘
  6. JS---案例:大量字符串拼接效果实现
  7. python类相关总结(持续更新)
  8. jnhs-SpringMVC的controller向jsp传递数据的五种方式
  9. 按照in条件排序
  10. Leetcode641.Design Circular Deque设计循环双端队列