理解:

http://blog.renren.com/share/263498909/1064362501

http://www.cnblogs.com/ronaflx/archive/2011/03/30/1999764.html

http://yomean.blog.163.com/blog/static/189420225201272864127683/

http://www.cnblogs.com/zxndgv/archive/2011/08/02/2125242.html

题目总结:

http://www.cnblogs.com/ronaflx/archive/2011/03/30/1999764.html

下摘自:http://www.cnblogs.com/zxndgv/archive/2011/08/02/2125242.html

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------

最有代价用d[i,j]表示 

d[i,j]=min{d[i,k-1]+d[k+1,j]}+w[i,j] 

当中w[i,j]=sum[i,j] 

四边形不等式   

     w[a,c]+w[b,d]<=w[b,c]+w[a,d](a<b<c<d) 就称其满足凸四边形不等式 

决策单调性 

     w[i,j]<=w[i',j']   ([i,j]属于[i',j']) 既 i'<=i<j<=j'



于是有下面三个定理 



定理一: 假设w同一时候满足四边形不等式 和 决策单调性 ,则d也满足四边形不等式

定理二:当定理一的条件满足时,让d[i,j]取最小值的k为K[i,j],则K[i,j-1]<=K[i,j]<=K[i+1,j] 

定理三:w为凸当且仅当w[i,j]+w[i+1,j+1]<=w[i+1,j]+w[i,j+1] 



由定理三知 推断w是否为凸即推断 w[i,j+1]-w[i,j]的值随着i的添加是否递减 

于是求K值的时候K[i,j]仅仅和K[i+1,j] 和 K[i,j-1]有关。所以 能够以i-j递增为顺序递推各个状态值终于求得结果  将O(n^3)转为O(n^2)

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------

注意:

注意决策单调性顺序,既要符合决策调性,也要符合题意 (!!!!)

注意枚举顺序,依据dp方程和决策单调性方程

注意初始化,防止訪问到无效状态或没处理的状态。

dp和s边界初始化,尤其是决策的上届和下届初始化。

例题1:

石子合并问题:hdu 3506

dp[i][j] = min{dp[i][k] + dp[k + 1][j] + cost[i, j] }, i <= k <= j - 1 , cost[i][j] = sum[j] - sum[i - 1]

s[i][j - 1] <= s[i][j] <= s[i + 1][j]

//#pragma warning (disable: 4786)
//#pragma comment (linker, "/STACK:16777216")
//HEAD
#include <cstdio>
#include <ctime>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <string>
#include <set>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
//LOOP
#define FE(i, a, b) for(int i = (a); i <= (b); ++i)
#define FD(i, b, a) for(int i = (b); i>= (a); --i)
#define REP(i, N) for(int i = 0; i < (N); ++i)
#define CLR(A,value) memset(A,value,sizeof(A))
#define CPY(a, b) memcpy(a, b, sizeof(a))
#define FC(it, c) for(__typeof((c).begin()) it = (c).begin(); it != (c).end(); it++)
//INPUT
#define RI(n) scanf("%d", &n)
#define RII(n, m) scanf("%d%d", &n, &m)
#define RIII(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define RS(s) scanf("%s", s)
//OUTPUT
#define WI(n) printf("%d\n", n)
#define WS(s) printf("%s\n", s) typedef long long LL;
const int INF = 1000000007;
const double eps = 1e-10;
const int maxn = 2010; int dp[maxn][maxn], s[maxn][maxn];
int w[maxn][maxn]; int n, m;
int val[maxn];
int sum[maxn]; ///求dp最小值
///枚举 区间 由小到大
void solve()
{
// memset(dp, 0, sizeof(dp));///初始化无效值
FE(i, 1, 2 * n)
{
dp[i][i] = 0;
s[i][i] = i;/// 初始化决策下届,为0
}
FE(len, 2, n)
{
for (int i = 2 * n - len; i >= 1; i--)
{
int j = i + len - 1; dp[i][j] = INF;
int a = s[i][j - 1], b = s[i + 1][j];
int cost = sum[j] - sum[i - 1];
for (int k = a; k <= b; k++)
{
if (dp[i][j] > dp[i][k] + dp[k + 1][j] + cost)
{
dp[i][j] = dp[i][k] + dp[k + 1][j] + cost;
s[i][j] = k;
}
}
}
}
} int main ()
{
while (~RI(n))
{
FE(i, 1, n) RI(val[i]), val[i + n] = val[i];;
FE(i, 1, 2 * n) sum[i] = sum[i - 1] + val[i];
// pre();
solve();
int ans = INF;
FE(i, 1, n)
{
if (ans > dp[i][n + i - 1])
ans = dp[i][n + i - 1];
}
printf("%d\n", ans);
}
return 0;
}

例题2:邮局问题:

id=1160">poj 1160

1:注意此法的 i 和 j 顺序与寻常不同

此时决策区间为:s[i - 1][j] <= s[i][j] <= s[i][j + 1] (!!!)

详细见凝视:

//#pragma warning (disable: 4786)
//#pragma comment (linker, "/STACK:16777216")
//HEAD
#include <cstdio>
#include <ctime>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <string>
#include <set>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
//LOOP
#define FE(i, a, b) for(int i = (a); i <= (b); ++i)
#define FD(i, b, a) for(int i = (b); i>= (a); --i)
#define REP(i, N) for(int i = 0; i < (N); ++i)
#define CLR(A,value) memset(A,value,sizeof(A))
#define CPY(a, b) memcpy(a, b, sizeof(a))
#define FC(it, c) for(__typeof((c).begin()) it = (c).begin(); it != (c).end(); it++)
//INPUT
#define RI(n) scanf("%d", &n)
#define RII(n, m) scanf("%d%d", &n, &m)
#define RIII(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define RS(s) scanf("%s", s)
//OUTPUT
#define WI(n) printf("%d\n", n)
#define WS(s) printf("%s\n", s) typedef long long LL;
const int INF = 1000000007;
const double eps = 1e-10;
const int maxn= 1000010; int dp[33][333], s[33][333];
int w[333][333]; int n, m;
int val[333];
int sum[333];
///dp[i][j] = min{dp[i - 1][k] + w[k + 1][j]}, i - 1 <= k <= j - 1
///一般要求 i <= j (!!)
///s[i - 1][j] <= s[i][j] <= s[i][j + 1] (! ! )
///注意决策单调性顺序,既要符合决策调性,也要符合题意 (!!!!)
///注意枚举顺序,依据dp方程和决策单调性方程
///注意初始化,防止訪问到无效状态或没处理的状态。dp和s边界初始化。尤其是决策的上届和下届初始化。 void pre()
{
for(int i = 1; i <= n; i ++) //这里有一个递推公式能够进行预处理
{
w[i][i] = 0;
for(int j = i + 1; j <= n; j ++)
{
int mid = (j + i) >> 1;
w[i][j] = w[i][j - 1] + val[j] - val[mid];
// int x = sum[j] - sum[mid] - val[mid] * (j - mid);
// x += val[mid] * (mid - i) - (sum[mid - 1] - sum[i - 1]);
}
}
} ///求dp最小值
///枚举i从小到大
///再枚举j从大到小
void solve()
{
memset(dp, 0, sizeof(dp));///初始化无效值
FE(i, 1, n)
{
dp[1][i] = w[1][i];
s[1][i] = 0;/// 初始化决策下届,为0
}
FE(i, 2, m)
{
//s[1][i] = 0;
s[i][n + 1] = n;///初始化决策上届
for (int j = n; j >= i; j--)
{
int tmp = dp[i][j] = INF;///初始化最优值
int a = s[i - 1][j], b = s[i][j + 1];
//a = max(a, i - 1); b = min(b, j - 1); // i - 1 <= k <= j - 1
for (int k = a; k <= b; k++) ///保证枚举到的都是有效状态,且都已计算过
{
if (tmp > dp[i - 1][k] + w[k + 1][j])
{
tmp = dp[i - 1][k] + w[k + 1][j];
s[i][j] = k;
}
}
dp[i][j] = tmp;
}
}
} int main ()
{
while (~RII(n, m))
{
FE(i, 1, n) RI(val[i]), sum[i] = sum[i - 1] + val[i];
pre();
solve();
printf("%d\n", dp[m][n]);
}
return 0;
}

2:-详细见凝视

此时决策区间为:s[i][j - 1] <= s[i][j] <= s[i + 1][j] (!!!)

//#pragma warning (disable: 4786)
//#pragma comment (linker, "/STACK:16777216")
//HEAD
#include <cstdio>
#include <ctime>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <string>
#include <set>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
//LOOP
#define FE(i, a, b) for(int i = (a); i <= (b); ++i)
#define FD(i, b, a) for(int i = (b); i>= (a); --i)
#define REP(i, N) for(int i = 0; i < (N); ++i)
#define CLR(A,value) memset(A,value,sizeof(A))
#define CPY(a, b) memcpy(a, b, sizeof(a))
#define FC(it, c) for(__typeof((c).begin()) it = (c).begin(); it != (c).end(); it++)
//INPUT
#define RI(n) scanf("%d", &n)
#define RII(n, m) scanf("%d%d", &n, &m)
#define RIII(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define RS(s) scanf("%s", s)
//OUTPUT
#define WI(n) printf("%d\n", n)
#define WS(s) printf("%s\n", s) typedef long long LL;
const int INF = 1000000007;
const double eps = 1e-10;
const int maxn= 1000010; int dp[333][33], s[333][33];
int w[333][333]; int n, m;
int val[333];
int sum[333];
///dp[i][j] = min{dp[k][j - 1] + w[k + 1][j]}, j - 1 <= k <= i - 1
///此处i>=j
///s[i][j - 1] <= s[i][j] <= s[i + 1][j] (!! )
///注意决策单调性顺序,既要符合决策调性,也要符合题意 (!!!!)
///注意枚举顺序。依据dp方程和决策单调性方程
///注意初始化。防止訪问到无效状态或没处理的状态。 dp和s边界初始化,尤其是决策的上届和下届初始化。 void pre()
{
for(int i = 1; i <= n; i ++) //这里有一个递推公式能够进行预处理
{
w[i][i] = 0;
for(int j = i + 1; j <= n; j ++)
{
int mid = (j + i) >> 1;
w[i][j] = w[i][j - 1] + val[j] - val[mid];
}
}
} ///求dp最小值
///枚举i从小到大
///再枚举j从大到小
void solve()
{
memset(dp, 0, sizeof(dp));///初始化无效值
FE(i, 1, n)
{
dp[i][1] = w[1][i];
s[i][1] = 0;/// 初始化决策下届,为0
}
FE(i, 2, m)
{
//s[i][1] = 0;
s[n + 1][i] = n;///初始化决策上届
for (int j = n; j >= i; j--)
{
int tmp = dp[j][i] = INF;///初始化最优值
int a = s[j][i - 1], b = s[j + 1][i];
//a = max(a, i - 1); b = min(b, j - 1);
for (int k = a; k <= b; k++) ///保证枚举到的都是有效状态,且都已计算过
{
if (tmp > dp[k][i - 1] + w[k + 1][j])
{
tmp = dp[k][i - 1] + w[k + 1][j];
s[j][i] = k;
}
}
dp[j][i] = tmp;
}
}
} int main ()
{
while (~RII(n, m))
{
FE(i, 1, n) RI(val[i]);
pre();
solve();
printf("%d\n", dp[n][m]);
}
return 0;
}

最新文章

  1. jenkins无法重启tomcat的原因
  2. HTML中使背景图片自适应浏览器大小
  3. position&amp;containing block
  4. vsftpd移植
  5. mysql简单操作一
  6. VTK三维重建(2)-根据脚部骨骼CT的三维重建和显示
  7. Android, JSONLIB , java.lang.NoClassDefFoundError: Failed resolution of: Lnet/sf/json/JSONArray; 原因
  8. python study
  9. iPhone的App嵌入html页面问题
  10. 部署Dubbo监控中心
  11. 微信小程序组件minui在mac系统的使用注意事项
  12. mysql性能分析工具
  13. 基于jQuery遮罩图片hover翻转效果
  14. topK 算法
  15. ubuntu16.04下firefly rk3288的编译安卓4.4
  16. angular2+ 自定义pipe管道实例--定义全局管道及使用
  17. ubuntu中mysql版本升级到5.7
  18. Maven 管理的WEB项目发布到Tomcat上
  19. cordova热更新插件的使用
  20. 存一些可能会用得到的vue的UI框架

热门文章

  1. docker 安装错误Transaction Check Error
  2. HDU 1028 HDU 1398 (母函数)
  3. mysql插入数据时,去掉重复的数据;
  4. ubuntu16.04(64位)建立交叉编译环境,并配置编译内核
  5. WebApi-JSON序列化循环引用
  6. php缓存类 内置output_buffer(ob)
  7. 使用IIS实现反向代理
  8. bzoj hash+map+set
  9. Codeforces Round #298 (Div. 2) E. Berland Local Positioning System 构造
  10. BZOJ 1588: [HNOI2002]营业额统计 双向链表