点云分割是根据空间,几何和纹理等特征对点云进行划分,使得同一划分内的点云拥有相似的特征,点云的有效分割往往是许多应用的前提,例如逆向工作,CAD领域对零件的不同扫描表面进行分割,然后才能更好的进行空洞修复曲面重建,特征描述和提取,进而进行基于3D内容的检索,组合重用等。

案例分析

用一组点云数据做简单的平面的分割:

planar_segmentation.cpp

#include <iostream>
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h> //随机参数估计方法头文件
#include <pcl/sample_consensus/model_types.h> //模型定义头文件
#include <pcl/segmentation/sac_segmentation.h> //基于采样一致性分割的类的头文件 int
main (int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); // 填充点云
cloud->width = ;
cloud->height = ;
cloud->points.resize (cloud->width * cloud->height); // 生成数据,采用随机数填充点云的x,y坐标,都处于z为1的平面上
for (size_t i = ; i < cloud->points.size (); ++i)
{
cloud->points[i].x = * rand () / (RAND_MAX + 1.0f);
cloud->points[i].y = * rand () / (RAND_MAX + 1.0f);
cloud->points[i].z = 1.0;
} // 设置几个局外点,即重新设置几个点的z值,使其偏离z为1的平面
cloud->points[].z = 2.0;
cloud->points[].z = -2.0;
cloud->points[].z = 4.0; std::cerr << "Point cloud data: " << cloud->points.size () << " points" << std::endl; //打印
for (size_t i = ; i < cloud->points.size (); ++i)
std::cerr << " " << cloud->points[i].x << " "
<< cloud->points[i].y << " "
<< cloud->points[i].z << std::endl;
//创建分割时所需要的模型系数对象,coefficients及存储内点的点索引集合对象inliers
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
// 创建分割对象
pcl::SACSegmentation<pcl::PointXYZ> seg;
// 可选择配置,设置模型系数需要优化
seg.setOptimizeCoefficients (true);
// 必要的配置,设置分割的模型类型,所用的随机参数估计方法,距离阀值,输入点云
seg.setModelType (pcl::SACMODEL_PLANE); //设置模型类型
seg.setMethodType (pcl::SAC_RANSAC); //设置随机采样一致性方法类型
seg.setDistanceThreshold (0.01); //设定距离阀值,距离阀值决定了点被认为是局内点是必须满足的条件
//表示点到估计模型的距离最大值, seg.setInputCloud (cloud);
//引发分割实现,存储分割结果到点几何inliers及存储平面模型的系数coefficients
seg.segment (*inliers, *coefficients); if (inliers->indices.size () == )
{
PCL_ERROR ("Could not estimate a planar model for the given dataset.");
return (-);
}
//打印出平面模型
std::cerr << "Model coefficients: " << coefficients->values[] << " "
<< coefficients->values[] << " "
<< coefficients->values[] << " "
<< coefficients->values[] << std::endl; std::cerr << "Model inliers: " << inliers->indices.size () << std::endl;
for (size_t i = ; i < inliers->indices.size (); ++i)
std::cerr << inliers->indices[i] << " " << cloud->points[inliers->indices[i]].x << " "
<< cloud->points[inliers->indices[i]].y << " "
<< cloud->points[inliers->indices[i]].z << std::endl; return ();
}

结果如下:开始打印的数据为手动添加的点云数据,并非都处于z为1的平面上,通过分割对象的处理后提取所有内点,即过滤掉z不等于1的点集

(2)实现圆柱体模型的分割:采用随机采样一致性估计从带有噪声的点云中提取一个圆柱体模型。

新建文件cylinder_segmentation.cpp

#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/passthrough.h>
#include <pcl/features/normal_3d.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h> typedef pcl::PointXYZ PointT; int
main (int argc, char** argv)
{
// All the objects needed
pcl::PCDReader reader; //PCD文件读取对象
pcl::PassThrough<PointT> pass; //直通滤波对象
pcl::NormalEstimation<PointT, pcl::Normal> ne; //法线估计对象
pcl::SACSegmentationFromNormals<PointT, pcl::Normal> seg; //分割对象
pcl::PCDWriter writer; //PCD文件读取对象
pcl::ExtractIndices<PointT> extract; //点提取对象
pcl::ExtractIndices<pcl::Normal> extract_normals; ///点提取对象
pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT> ()); // Datasets
pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>);
pcl::PointCloud<PointT>::Ptr cloud_filtered (new pcl::PointCloud<PointT>);
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);
pcl::PointCloud<PointT>::Ptr cloud_filtered2 (new pcl::PointCloud<PointT>);
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals2 (new pcl::PointCloud<pcl::Normal>);
pcl::ModelCoefficients::Ptr coefficients_plane (new pcl::ModelCoefficients), coefficients_cylinder (new pcl::ModelCoefficients);
pcl::PointIndices::Ptr inliers_plane (new pcl::PointIndices), inliers_cylinder (new pcl::PointIndices); // Read in the cloud data
reader.read ("table_scene_mug_stereo_textured.pcd", *cloud);
std::cerr << "PointCloud has: " << cloud->points.size () << " data points." << std::endl; // 直通滤波,将Z轴不在(0,1.5)范围的点过滤掉,将剩余的点存储到cloud_filtered对象中
pass.setInputCloud (cloud);
pass.setFilterFieldName ("z");
pass.setFilterLimits (, 1.5);
pass.filter (*cloud_filtered);
std::cerr << "PointCloud after filtering has: " << cloud_filtered->points.size () << " data points." << std::endl; // 过滤后的点云进行法线估计,为后续进行基于法线的分割准备数据
ne.setSearchMethod (tree);
ne.setInputCloud (cloud_filtered);
ne.setKSearch ();
ne.compute (*cloud_normals); // Create the segmentation object for the planar model and set all the parameters
seg.setOptimizeCoefficients (true);
seg.setModelType (pcl::SACMODEL_NORMAL_PLANE);
seg.setNormalDistanceWeight (0.1);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setMaxIterations ();
seg.setDistanceThreshold (0.03);
seg.setInputCloud (cloud_filtered);
seg.setInputNormals (cloud_normals);
//获取平面模型的系数和处在平面的内点
seg.segment (*inliers_plane, *coefficients_plane);
std::cerr << "Plane coefficients: " << *coefficients_plane << std::endl; // 从点云中抽取分割的处在平面上的点集
extract.setInputCloud (cloud_filtered);
extract.setIndices (inliers_plane);
extract.setNegative (false); // 存储分割得到的平面上的点到点云文件
pcl::PointCloud<PointT>::Ptr cloud_plane (new pcl::PointCloud<PointT> ());
extract.filter (*cloud_plane);
std::cerr << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;
writer.write ("table_scene_mug_stereo_textured_plane.pcd", *cloud_plane, false); // Remove the planar inliers, extract the rest
extract.setNegative (true);
extract.filter (*cloud_filtered2);
extract_normals.setNegative (true);
extract_normals.setInputCloud (cloud_normals);
extract_normals.setIndices (inliers_plane);
extract_normals.filter (*cloud_normals2); // Create the segmentation object for cylinder segmentation and set all the parameters
seg.setOptimizeCoefficients (true); //设置对估计模型优化
seg.setModelType (pcl::SACMODEL_CYLINDER); //设置分割模型为圆柱形
seg.setMethodType (pcl::SAC_RANSAC); //参数估计方法
seg.setNormalDistanceWeight (0.1); //设置表面法线权重系数
seg.setMaxIterations (); //设置迭代的最大次数10000
seg.setDistanceThreshold (0.05); //设置内点到模型的距离允许最大值
seg.setRadiusLimits (, 0.1); //设置估计出的圆柱模型的半径的范围
seg.setInputCloud (cloud_filtered2);
seg.setInputNormals (cloud_normals2); // Obtain the cylinder inliers and coefficients
seg.segment (*inliers_cylinder, *coefficients_cylinder);
std::cerr << "Cylinder coefficients: " << *coefficients_cylinder << std::endl; // Write the cylinder inliers to disk
extract.setInputCloud (cloud_filtered2);
extract.setIndices (inliers_cylinder);
extract.setNegative (false);
pcl::PointCloud<PointT>::Ptr cloud_cylinder (new pcl::PointCloud<PointT> ());
extract.filter (*cloud_cylinder);
if (cloud_cylinder->points.empty ())
std::cerr << "Can't find the cylindrical component." << std::endl;
else
{
std::cerr << "PointCloud representing the cylindrical component: " << cloud_cylinder->points.size () << " data points." << std::endl;
writer.write ("table_scene_mug_stereo_textured_cylinder.pcd", *cloud_cylinder, false);
}
return ();
}

试验打印的结果如下

原始点云可视化的结果.三维场景中有平面,杯子,和其他物体

产生分割以后的平面和圆柱点云,查看的结果如下

   

(3)PCL中实现欧式聚类提取。对三维点云组成的场景进行分割

#include <pcl/ModelCoefficients.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/kdtree/kdtree.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_clusters.h> /******************************************************************************
打开点云数据,并对点云进行滤波重采样预处理,然后采用平面分割模型对点云进行分割处理
提取出点云中所有在平面上的点集,并将其存盘
******************************************************************************/
int
main (int argc, char** argv)
{
// Read in the cloud data
pcl::PCDReader reader;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
reader.read ("table_scene_lms400.pcd", *cloud);
std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl; //* // Create the filtering object: downsample the dataset using a leaf size of 1cm
pcl::VoxelGrid<pcl::PointXYZ> vg;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
vg.setInputCloud (cloud);
vg.setLeafSize (0.01f, 0.01f, 0.01f);
vg.filter (*cloud_filtered);
std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size () << " data points." << std::endl; //*
//创建平面模型分割的对象并设置参数
pcl::SACSegmentation<pcl::PointXYZ> seg;
pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ> ()); pcl::PCDWriter writer;
seg.setOptimizeCoefficients (true);
seg.setModelType (pcl::SACMODEL_PLANE); //分割模型
seg.setMethodType (pcl::SAC_RANSAC); //随机参数估计方法
seg.setMaxIterations (); //最大的迭代的次数
seg.setDistanceThreshold (0.02); //设置阀值 int i=, nr_points = (int) cloud_filtered->points.size ();
while (cloud_filtered->points.size () > 0.3 * nr_points)
{
// Segment the largest planar component from the remaining cloud
seg.setInputCloud (cloud_filtered);
seg.segment (*inliers, *coefficients);
if (inliers->indices.size () == )
{
std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
break;
} pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud (cloud_filtered);
extract.setIndices (inliers);
extract.setNegative (false); // Get the points associated with the planar surface
extract.filter (*cloud_plane);
std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl; // // 移去平面局内点,提取剩余点云
extract.setNegative (true);
extract.filter (*cloud_f);
*cloud_filtered = *cloud_f;
} // Creating the KdTree object for the search method of the extraction
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
tree->setInputCloud (cloud_filtered); std::vector<pcl::PointIndices> cluster_indices;
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec; //欧式聚类对象
ec.setClusterTolerance (0.02); // 设置近邻搜索的搜索半径为2cm
ec.setMinClusterSize (); //设置一个聚类需要的最少的点数目为100
ec.setMaxClusterSize (); //设置一个聚类需要的最大点数目为25000
ec.setSearchMethod (tree); //设置点云的搜索机制
ec.setInputCloud (cloud_filtered);
ec.extract (cluster_indices); //从点云中提取聚类,并将点云索引保存在cluster_indices中
//迭代访问点云索引cluster_indices,直到分割处所有聚类
int j = ;
for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit) cloud_cluster->points.push_back (cloud_filtered->points[*pit]); //*
cloud_cluster->width = cloud_cluster->points.size ();
cloud_cluster->height = ;
cloud_cluster->is_dense = true; std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
std::stringstream ss;
ss << "cloud_cluster_" << j << ".pcd";
writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false); //*
j++;
} return ();
}

运行结果:

不再一一查看可视化的结果

为了更切合实际的应用我会在这些基本的程序的基础上,进行与实际结合的实例,因为这些都是官方给的实例,我是首先学习一下,至少过一面,这样在后期结合实际应用的过程中会更加容易一点。(因为我也是一边学习,然后回头再在基础上进行更修)

同时有很多在我的微信公众号上的同学后台与我交流,有时候不能即时回复敬请谅解,(之前,就有一个不知道哪个学校的关注后就一直问我问题,告诉它基本的案例,还要我告诉他怎么实现,本人不才,我也是入门者阿,)

请扫面二维码关注

最新文章

  1. 窗体作为控件嵌入panel
  2. md5算法
  3. linux的&lt;pthread.h&gt;
  4. Win7 x64下进程保护与文件保护(ObRegisterCallbacks)
  5. php 下载远程图片 的几种方法(转)
  6. poj 1201 差分约束
  7. 学习Learn Python The Hard Way 前言中的一段话,可与君共勉
  8. Array.asList()注意
  9. jquery parseInt()的问题
  10. if else配对问题
  11. UVa 11408 - Count DePrimes
  12. hdu 3986 Harry Potter and the Final Battle
  13. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]
  14. Vue项目搭建及原理二
  15. UVA - 11997:K Smallest Sums
  16. uni-app编写小程序
  17. 关于python中loc和iloc方法
  18. java的OSGi确实是个坑
  19. (一)python的前世今生
  20. Centos、Ubuntu开启命令模式

热门文章

  1. windows 64位下,React-Native环境搭建详解 (Android)
  2. InlineModelAdmin对象的学习
  3. JAVA中如何正确的用String转Date
  4. Vue(六):条件与循环
  5. keepAlive参数详解
  6. Spring boot 通用配置文件模板
  7. gf框架之grpool - 高性能的goroutine池
  8. 菜鸟学Java(十五)——Java反射机制(二)
  9. redis中键空间通知
  10. JAVA Zero Copy的相关知识【转】