Time Series Analysis

Best MSE (Mean Square Error) Predictor

对于所有可能的预测函数 \(f(X_{n})\),找到一个使 \(\mathbb{E}\big[\big(X_{n} - f(X_{n})\big)^{2} \big]\) 最小的 \(f\) 的 predictor。这样的 predictor 假设记为 \(m(X_{n})\), 称作 best MSE predictor,i.e.,

\[m(X_{n}) = \mathop{\arg\min}\limits_{f} \mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big]
\]

我们知道:\(\mathop{\arg\min}\limits_{f} \mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big]\) 的解即为:

\[\mathbb{E}\big[ X_{n+h} ~ \big| ~ X_{n} \big]
\]

证明:

基于 \(X_{n}\) 求 \(\mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big]\) 的最小值,实际上:

\[\mathop{\arg\min}\limits_{f} \mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big] \iff \mathop{\arg\min}\limits_{f} \mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} ~ \big| ~ X_{n} \big]
\]

  • 私以为更严谨的写法是 \(\mathop{\text{argmin}}\limits_{f} ~ \mathbb{E}\Big[\Big(X_{n+h} - f\big( X_{n}\big)\Big)^{2} ~ | ~ \mathcal{F}_{n}\Big]\),其中 \(\left\{ \mathcal{F}_{t}\right\}_{t\geq 0}\) 为 \(\left\{ X_{t} \right\}_{t\geq 0}\) 相关的 natural filtration,but whatever。

等式右侧之部分:

\[\begin{align*}
\mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} ~ \big| ~ X_{n} \big] & = \mathbb{E}[X_{n+h}^{2} ~ | ~ X_{n}] - 2f(X_{n})\mathbb{E}[X_{n+h} ~ | ~ X_{n}] + f^{2}(X_{n}) \\
\end{align*}
\]

其中由于:

\[\begin{align*}
Var(X_{n+h} ~ | ~ X_{n}) & = \mathbb{E}\Big[ \big( X_{n+h} - \mathbb{E}\big[ X_{n+h}^{2} ~ | ~ X_{n} \big] \big)^{2} ~ \Big| ~ X_{n} \Big] \\
& = \mathbb{E}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] - 2\mathbb{E}^{2}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] + \mathbb{E}^{2}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] \\
& = \mathbb{E}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] - \mathbb{E}^{2}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big]
\end{align*}
\]

which gives that:

\[\implies Var(X_{n+h} ~ | ~ X_{n}) = \mathbb{E}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] - \mathbb{E}^{2}\big[ X_{n+h} ~ \big| ~ X_{n} \big]
\]

因此,

\[\begin{align*}
\mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} ~ \big| ~ X_{n} \big] & = Var(X_{n+h} ~ | ~ X_{n}) + \mathbb{E}^{2}\big[ X_{n+h} ~ \big| ~ X_{n}\big] - 2f(X_{n})\mathbb{E}[X_{n+h} ~ | ~ X_{n}] + f^{2}(X_{n}) \\
& = Var(X_{n+h} ~ | ~ X_{n}) + \Big( \mathbb{E}\big[ X_{n+h} ~ \big| ~ X_{n}\big] - f(X_{n}) \Big)^{2}
\end{align*}
\]

方差 \(Var(X_{n+h} ~ | ~ X_{n})\) 为定值,那么 optimal solution \(m(X_{n})\) 显而易见:

\[m(X_{n}) = \mathbb{E}\big[ X_{n+h} ~ \big| ~ X_{n} \big]
\]

此时 \(\left\{ X_{t} \right\}\) 为一个 Stationary Gaussian Time Series, i.e.,

\[\begin{pmatrix}
X_{n+h}\\
X_{n}
\end{pmatrix} \sim N \begin{pmatrix}
\begin{pmatrix}
\mu \\
\mu
\end{pmatrix}, ~ \begin{pmatrix}
\gamma(0) & \gamma(h) \\
\gamma(h) & \gamma(0)
\end{pmatrix}
\end{pmatrix}
\]

那么我们有:

\[X_{n+h} ~ | ~ X_{n} \sim N\Big( \mu + \rho(h)\big(X_{n} - \mu\big), ~ \gamma(0)\big(1 - \rho^{2}(h)\big) \Big)
\]

其中 \(\rho(h)\) 为 \(\left\{ X_{t} \right\}\) 的 ACF,因此,

\[\mathbb{E}\big[ X_{n+h} ~ \big| ~ X_{n} \big] = m(X_{n}) = \mu + \rho(h) \big( X_{n} - \mu \big)
\]

注意:

若 \(\left\{ X_{t} \right\}\) 是一个 Gaussian time series,则一定能计算 best MSE predictor。而若 \(\left\{ X_{t} \right\}\) 并非 Gaussian time series,则计算通常十分复杂。

因此,我们通常不找 best MSE predictor,而寻找 best linear predictor。


Best Linear Predictor (BLP)

在 BLP 假设下,我们寻找一个形如 \(f(X_{n}) \propto aX_{n} + b\) 的 predictor。

则目标为:

\[\text{minimize: } ~ S(a,b) = \mathbb{E} \big[ \big( X_{n+h} - aX_{n} -b \big)^{2} \big]
\]

推导:

分别对 \(a, b\) 求偏微分:

\[\begin{align*}
\frac{\partial}{\partial b} S(a, b) & = \frac{\partial}{\partial b} \mathbb{E} \big[ \big( X_{n+h} - aX_{n} -b \big)^{2} \big] \\
& = -2 \mathbb{E} \big[ X_{n+h} - aX_{n} - b \big] \\
\end{align*}
\]

令:

\[\frac{\partial}{\partial b} S(a, b) = 0
\]

则:

\[\begin{align*}
-2 \cdot & \mathbb{E} \big[ X_{n+h} - aX_{n} - b \big] = 0 \\
\implies & \qquad \mathbb{E}[X_{n+h}] - a\mathbb{E}[X_{n}] - b = 0\\
\implies & \qquad \mu - a\mu - b = 0 \\
\implies & \qquad b^{\star} = (1 - a^{\star}) \mu
\end{align*}
\]

回代并 take partial derivative on \(a\):

\[\begin{align*}
\frac{\partial}{\partial a} S(a, b) & = \frac{\partial}{\partial a} \mathbb{E} \big[ \big( X_{n+h} - aX_{n} - (1 - a)\mu \big)^{2} \big] \\
& = \frac{\partial}{\partial a} \mathbb{E} \Big[ \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)^{2} \Big] \\
& = \mathbb{E} \Big[ - \big( X_{n} - \mu \big) \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)\Big] \\
\end{align*}
\]

令:

\[\frac{\partial}{\partial a} S(a, b) = 0
\]

则:

\[\begin{align*}
& \mathbb{E} \Big[ - \big( X_{n} - \mu \big) \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)\Big] = 0 \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mu \big) \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)\Big] = 0 \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mu \big) \big(X_{n+h} - \mu \big) - a \big( X_{n} - \mu \big) \big( X_{n} - \mu \big) \Big] = 0 \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mu \big) \big(X_{n+h} - \mu \big) \Big] = a \cdot \mathbb{E} \Big[\big( X_{n} - \mu \big) \big( X_{n} - \mu \big) \Big] \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mathbb{E}[X_{n}] \big) \big(X_{n+h} - \mathbb{E}[X_{n+h}] \big) \Big] = a \cdot \mathbb{E} \Big[\big( X_{n} - \mathbb{E}[X_{n}] \big)^{2} \Big] \\
\implies & \qquad \text{Cov}(X_{n}, X_{n+h}) = a \cdot \text{Var}(X_{n}) \\
\implies & \qquad a^{\star} = \frac{\gamma(h)}{\gamma(0)} = \rho(h)
\end{align*}
\]

综上,time series \(\left\{ X_{n} \right\}\) 的 BLP 为:

\[f(X_{n}) = l(X_{n}) = \mu + \rho(h) \big( X_{n} - \mu \big)
\]

且 BLP 相关的 MSE 为:

\[\begin{align*}
\text{MSE} & = \mathbb{E}\big[ \big( X_{n+h} - l(X_{n}) \big)^{2} \big] \\
& = \mathbb{E} \Big[ \Big( X_{n+h} - \mu - \rho(h) \big( X_{n} - \mu \big) \Big)^{2} \Big] \\
& = \rho(0) \cdot \big( 1 - \rho^{2}(h) \big)
\end{align*}
\]

最新文章

  1. ASP.NET Core 中文文档 第四章 MVC(4.6)Areas(区域)
  2. download ncRNA sequences form NCBI
  3. C#5.0 特性
  4. 【iCore3 双核心板】例程十五:USB_CDC实验——高速数据传输
  5. [游戏模版7] Win32 最简单贴图
  6. 【测试】手工搭建DG
  7. linux 全自动提权 exp perl脚本
  8. deque用法 和与vector的区别
  9. 前端MVVM学习之KnockOut(一)
  10. Swift # 异常处理
  11. MVC 用扩展方法执行自定义视图,替代 UIHint
  12. CodeForces 696A Lorenzo Von Matterhorn (LCA + map)
  13. Python的初步认识与基本模块的导入
  14. 关于input的一些问题解决方法分享
  15. Vue之展示PDF格式的文档
  16. 【Java基础】【12String类】
  17. HashMap是如何工作的
  18. 第二十九节:Java基础知识-类,多态,Object,数组和字符串
  19. 电感式DC/DC变换器工作原理
  20. iOS同一项目多个Target的快速实现方法 - 两种使用场景详解

热门文章

  1. Oracle性能优化之内存管理
  2. Java代码审计sql注入
  3. nginx的域名重写和转发案例
  4. 基于 MQ 的分布式 Serverless 多租任务处理系统架构演进
  5. Huawei OJ 题解 - 31. 整数拆分 - Go 参考解答
  6. 第2-4-4章 规则引擎Drools规则属性-业务规则管理系统-组件化-中台
  7. MybatisPlus多表连接查询一对多分页查询数据
  8. 【重难点整理】通过kafka的全过程叙述kafka的原理、特性及常见问题
  9. 网络编程 - OSI七层协议详解
  10. C#不提升自己程序的权限实现操作注册表