上一篇: Java并发之AQS原理解读(一)

前言

本文从源码角度分析AQS独占锁工作原理,并介绍ReentranLock如何应用。

独占锁工作原理

独占锁即每次只有一个线程可以获得同一个锁资源。

获取锁

  1. 尝试获取资源(修改state),成功则返回
  2. 资源不足的情况下,线程会被封装成Node写入阻塞队列,然后以CAS自旋地方式循环重试获取锁(当插入的结点是head的直接后继时尝试获取锁,否则进入阻塞,只有当其他线程释放锁或者调用当前节点线程的中断方法时,才会重试获取锁)
  3. 自旋获取锁成功后,会将当前节点设为队列头结点
  4. 如果自旋阶段发生了线程中断,在获取锁成功之后,会补偿主动调用一次 interrupt 方法。因为自旋时调用的是interrupted方法返回中断标识,调用完后会清除状态

源码分析:

/* 获取独占锁
* 1. tryAcquire 先尝试获取锁,如果成功直接返回;
* 2. 否则 addWaiter 初始化辅助头结点,并将新节点添加到阻塞队列;
* acquireQueued 如果新节点是 head 的直接后继则尝试获取锁,否则 LockSupport 阻塞当前线程,
* 直到被释放锁的线程唤醒或者发生线程中断,才会重新尝试获取锁(CAS自旋阶段);
* 3. 获取锁成功后,如果之前循环重试阶段发生线程中断,则会通过 selfInterrupt 将线程中断标志设为 true
*/
public final void acquire(int arg) {
if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
} // 将新节点插入到队尾
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
Node pred = tail;
// 如果tail节点不为null时,直接尝试插入
if (pred != null) {
node.prev = pred;
// 修改tail变量的值为插入节点的地址,即让tail指向新插入的节点
// pred的值不变,还是原tail的地址
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
// tail节点为null时,先初始化辅助头节点,再插入新节点
enq(node);
return node;
} // 初始化辅助头节点,循环地将新节点插入到队尾,直至成功
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) {
// 初始化辅助头节点
if (compareAndSetHead(new Node()))
tail = head;
} else {
// 插入新节点
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
} // CAS自旋阶段
// 循环重试获取锁,不成功就阻塞,直到被其他释放锁线程唤醒或发生线程中断,方法返回自旋阶段是否发生线程中断
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
/*
* 如果新插入结点是 head 的直接后继,则尝试获取锁
* 获取成功,则将当前节点设为head,并改成 dummy node(假结点)
*/
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC,丢弃原先的 dummy node
failed = false;
return interrupted;
}
/*
* 获取锁失败后阻塞当前节点,直到其他线程释放锁或调用当前线程的线程中断
* 发生线程中断的情况时,会将 interrupted 设为 true,表示自旋阶段发生了线程中断
* shouldParkAfterFailedAcquire方法在前驱节点状态不为SIGNAL的情况下都会循环重试获取锁
*/
if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
} // 根据前驱节点等待状态判断是否要阻塞当前线程
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
/*
* 前驱节点等待状态为SIGNAL时,在释放锁的时候会唤醒后继节点,
* 所以当前节点的线程可以阻塞自己
*/
return true;
if (ws > 0) {
/*
* 前驱节点等待状态为CANCELLED时,向前遍历
* 断开对 CANCELLED 状态结点引用,help gc
* 之后会回到循环重试获取锁
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/**
* 等待状态为0或者PROPAGATE(-3)时,设置前驱节点等待状态为SIGNAL,
* 之后会回到循环重试获取锁
*/
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
} // 阻塞当前线程并返回线程的中断标识
private final boolean parkAndCheckInterrupt() {
// 阻塞当前线程,可以通过 LockSupport.unpark 或 currentThread.interrupt 唤醒
LockSupport.park(this);
return Thread.interrupted();
}

释放锁

  1. 尝试释放资源(修改state),如果失败直接返回
  2. 成功的话,再唤醒阻塞队列中的下一个结点的线程。当前节点后继不符合时,会从队尾往前找

源码分析:

// 释放锁
public final Boolean release(int arg) {
// 释放资源
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
} // 获取并唤醒头结点后的一个待唤醒结点(waitStatus<=0)
private void unparkSuccessor(Node node) {
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
// 结点直接后继不符合,则从队尾向前找
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
// 唤醒阻塞结点的线程
LockSupport.unpark(s.thread);
}

ReentranLock实现

非公平锁含义在于拥有锁的线程释放锁的时候,当前尝试获取锁资源的线程可以和队列中的第一个等待线程竞争;而已经进入队列的线程只能按照先进先出的顺序获取锁,也就是公平锁的逻辑。

第一次获取锁时,只要锁还未被占用,非公平锁会先直接通过CAS抢占,而公平锁则会判断是否有其他结点先进入队列,没有的话才会尝试获取锁。

ReentranLock是可重入锁,可重入即获得锁的线程可以重复进入临界区。通过实现AbstractOwnableSynchronizer接口记录获取锁的线程,当线程重复进入临界区时state+1,退出临界区时state-1

非公平锁

// 先尝试 CAS 抢占锁,失败后再通过 acquire 尝试
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
} protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
} final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
// 当锁未被占用时,尝试获取锁
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
// 已获得锁的线程支持重入
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}

公平锁

// 不抢占,通过 acquire 尝试
final void lock() {
acquire(1);
} protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
/**
* 当锁未被占用时,且阻塞队列中没有结点比当前节点更早开始等待时,才尝试获取锁
*/
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
// 已获得锁的线程支持重入
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}

下一篇 Java并发之AQS原理解读(三) 将介绍共享锁工作原理。

参考:

Java AQS源码解读

hasQueuedPredecessors源码分析

最新文章

  1. 将UINavgationController的push改成从左到右
  2. add user
  3. socket学习笔记——select与epoll函数的使用(linux)
  4. SQL Server 调优:set statistics profile on
  5. 关于arcgis 9.3破解问题详解
  6. 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7
  7. 基于简单sql语句的sql解析原理及在大数据中的应用
  8. 结对编程--Goldpoint Game
  9. win10环境下tensorflow-gpu安装
  10. tensorflow.python.framework.errors_impl.OutOfRangeError: FIFOQueue
  11. Flask 启动报错 error: [Errno 10053]
  12. Python实现12306自动查票程序
  13. hdu 5877 Weak Pair (Treap)
  14. 254. Factor Combinations 返回所有因数组合
  15. 原生js 当前时间 倒计时代码
  16. HDU 1069:Monkey and Banana(DP)
  17. Andrew Ng机器学习课程笔记(二)之逻辑回归
  18. 无法正确解析FreeMarker视图
  19. 使用iCarousel的旋转木马效果请求图片
  20. sql server 2005 链接服务器:未将服务器 配置为用于 RPC

热门文章

  1. 第3天 IDEA 2021简单设置与优化 Java运算符 包机制
  2. Python入门 -- 001
  3. sentry_sdk 错误日志监控 Flask配置
  4. 1.1 MATLAB系统环境
  5. maven 标签 关于&lt;import&gt;标签
  6. 初学MyBatis(踩坑)Error querying database. Cause: java.sql.SQLException: java.lang.ClassCastException: java.math.BigInteger cannot be cast to java.lang.Long
  7. noip模拟33[进阶啦啦啦]
  8. 超详细!Vue-Router手把手教程
  9. web笔记随笔
  10. Java基础——自增自减及初识Math类