比赛链接

A

题解

知识点:贪心。

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; bool solve() {
int n;
cin >> n;
int cnt = 0;
for (int i = 1;i <= n;i++) {
int x;
cin >> x;
if (x == 1) cnt++;
}
int rst = n - cnt / 2 * 2;
cout << rst + cnt / 2 << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

B

题解

知识点:贪心。

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; bool solve() {
int a, b, c, d;
cin >> a >> b >> c >> d;
if (a == 0) {
cout << min(b + c + d, 1) << '\n';
return 1;
}
else {
int ans = a + 2 * min(b, c) + min(a, abs(b - c) + d) + (abs(b - c) + d > a);
cout << ans << '\n';
}
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

C

题意

给一个长为 \(n\) 的排列,每次操作可以任选两个数,其中小的挪到开头,大的挪到末尾,问最少几次操作可以使得排列有序。

题解

知识点:贪心,枚举,双指针。

注意到,操作不影响没有被操作过的数字的相对位置,因此考虑排列中不需要操作的数字。显然,最终被保留的数字应该是连续上升的一个子序列,如 23456 是,而 13456 不是因为 \(1\) 和 \(3\) 中间没有 \(2\) 。

假设我们操作了某一组数 \((x,y)\) ,那么 \((x,y),(x-1,y+1),\cdots ,(1,n)\) 一定都需要操作一遍才能保证这些数字有序。因此只有中间的数我们不需要操作,所以我们保留的数字应该从中间开始往外拓展。

若 \(n\) 为奇数,则从中点 \(\dfrac{1+n}{2}\) 开始往两边扩展;若 \(n\) 为偶数,先保证 \(\left\lfloor \dfrac{1+n}{2} \right\rfloor ,\left\lceil \dfrac{1+n}{2} \right\rceil\) 有序,再从这两个数两边扩展,如果不有序直接输出 \(\dfrac{n}{2}\) 。

为了方便找到某个数的位置,我们可以先处理数到位置的映射 \(pos\) ,再利用双指针 \(l,r\) 指向扩展的边界,向两边同时扩展,如果有一边扩展不了那就不需要继续了,最后结果是 \(l-1\) 。

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; int pos[200007];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) {
int x;
cin >> x;
pos[x] = i;
}
int l = (1 + n) / 2, r = (1 + n + 1) / 2;
if (pos[l] > pos[r]) {
cout << n / 2 << '\n';
return 1;
}
while (1 < l && r < n) {
if (pos[l - 1] > pos[l] || pos[r] > pos[r + 1]) break;
l--;
r++;
}
cout << l - 1 << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

D

题意

给你 \(n\) 个长为 \(m\) 的排列 \(a_i\) 。

定义一个排列 \(p\) 的值为满足 \(p_i = i,i \in[1,k]\) 中 \(k\) 的最大值。

定义两个排列 \(p,q\) 的乘法 \(p \cdot q\) 为 \(r_i = q_{p_i}\) 。

对于给定的 \(n\) 个排列中,对于每个排列 \(a_i\) 找到另一个排列 \(a_j\) ( \(j\) 可以等于 \(i\) )使得 \(a_i \cdot a_j\) 的值最大,求出这 \(n\) 个最大值。

题解

知识点:枚举。

先考虑两个排列 \(p,q\) 乘积的求值过程,即如何求出 \(q_{p_1} = 1,\cdots,q_{p_k} = k\) 中 \(k\) 最大值。

显然 \(q_{p_1} = 1\) ,即 \(q\) 中 \(1\) 的位置是 \(p_1\) ,我们就能得到 \(k\) 至少是 \(1\) ,以此类推直到 \(q_{p_i} \neq i\) 就能得到 \(k = i-1\) ,复杂度是 \(O(n^2m^2)\) ,先考虑先优化枚举过程。

既然我们要知道某个数的位置,那么我们可以先预处理出 \(q\) 所有数字出现的位置 \(pos\) 。我们发现 \(q_{p_i} = i\) 等价于 \(pos_i = p_i\) ,即 \(i\) 出现的位置等于 \(p_i\) 那么自然可以得到 \(q_{p_i} = i\) ,由此我们从 \(pos_1 = p_1\) 开始找到最大的 \(k\) 满足 \(pos_k = p_k\) 即可。现在复杂度是 \(O(n^2m)\) ,考虑优化 \(n\) 次查找。

我们发现查找的过程,其实就是一个 \(p\) 和 \(n\) 个 \(pos\) 匹配最长前缀的过程,可以用字典树 trie 解决,复杂度是 \(O(nm)\) 。但这里 \(m\) 不大(其实是我不会字典树),我们可以将排列用十进制压缩成一个整数,用 map 记录 \(n\) 个排列的前缀信息来解决。设 \(mp_i\) 为 \(n\) 个排列的 \(pos\) 前 \(i\) 个数的前缀信息,例如排列 \(pos = [3,1,4,2]\) 前三个数字的信息就是 \(314\) ,记录在 \(mp_3\) 中。例如,我们查找 \(p = [4,3,2,1]\) 前 \(2\) 个数的匹配信息时,只要判断 \(mp_2\) 中有无 \(43\) 即可。到此为止,我们对 \(p\) 从前 \(1\) 个数依次查找,最多查找 \(m\) 次就可以找到最大的 \(k\) 了,复杂度是 \(O(nm\log n)\) 。

时间复杂度 \(O(nm \log n)\)

空间复杂度 \(O(nm)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; int a[50007][11];
int pos[11];
map<ll, int> mp[11];
bool solve() {
int n, m;
cin >> n >> m;
for (int i = 1;i <= m;i++) mp[i].clear();
for (int i = 1;i <= n;i++) {
for (int j = 1;j <= m;j++) {
cin >> a[i][j];
pos[a[i][j]] = j;
}
ll _t = 0;
for (int j = 1;j <= m;j++) {
_t = _t * 10 + pos[j] - 1;
mp[j][_t] = 1;
}
}
for (int i = 1;i <= n;i++) {
ll _t = 0;
int ans = m;
for (int j = 1;j <= m;j++) {
_t = _t * 10 + a[i][j] - 1;
if (!mp[j][_t]) {
ans = j - 1;
break;
}
}
cout << ans << ' ';
}
cout << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

最新文章

  1. PHP工作笔记:使用yii migrate管理、生成数据库
  2. Ueditor 上传图片 如何设置只显示 本地上传
  3. 2014 ACM/ICPC 北京邀请赛 部分 题解
  4. WPF 检测计算机网络连接情况
  5. nyoj------203三国志
  6. 8套迷人精致的CSS3 3D按钮动画
  7. maya 2015配置openCollada插件
  8. RE:通过移动端滑动手势实现数据加载
  9. webmagic 基本的方法
  10. 获取访问者IP
  11. Maven中添加镜像
  12. 3/1 AT指令集
  13. 不容易系列之一(hdu1465)错排+递推
  14. smartProgram学习笔记
  15. gentoo 工具命令
  16. Linux 自动挂载硬盘的方法
  17. Networx蓝屏问题
  18. SQLite中SELECT基本形式
  19. android异步向服务器请求数据
  20. 团队作业8——敏捷冲刺博客合集(Beta阶段)

热门文章

  1. 记录一次sshd服务启动失败
  2. Workflow,要不要了解一下
  3. OpenMP 教程(一) 深入人剖析 OpenMP reduction 子句
  4. WPF之lognet4的基本使用
  5. Git 实战代码分支管理 | Git Flow 策略
  6. minio API demo
  7. 165 pbi-utils 使用文档
  8. SpringCLoud_Aibaba
  9. kettel
  10. 编译器优化丨Cache优化