from numpy import array, append, vstack, transpose, reshape, \
dot, true_divide, mean, exp, sqrt, log, \
loadtxt, savetxt, zeros, frombuffer
from numpy.linalg import norm, lstsq
from multiprocessing import Process, Array
from random import sample
from time import time
from sys import stdout
from ctypes import c_double
from h5py import File def metrics(a, b):
return norm(a - b) def gaussian (x, mu, sigma):
return exp(- metrics(mu, x)**2 / (2 * sigma**2)) def multiQuadric (x, mu, sigma):
return pow(metrics(mu,x)**2 + sigma**2, 0.5) def invMultiQuadric (x, mu, sigma):
return pow(metrics(mu,x)**2 + sigma**2, -0.5) def plateSpine (x,mu):
r = metrics(mu,x)
return (r**2) * log(r) class Rbf:
def __init__(self, prefix = 'rbf', workers = 4, extra_neurons = 0, from_files = None):
self.prefix = prefix
self.workers = workers
self.extra_neurons = extra_neurons # Import partial model
if from_files is not None:
w_handle = self.w_handle = File(from_files['w'], 'r')
mu_handle = self.mu_handle = File(from_files['mu'], 'r')
sigma_handle = self.sigma_handle = File(from_files['sigma'], 'r') self.w = w_handle['w']
self.mu = mu_handle['mu']
self.sigmas = sigma_handle['sigmas'] self.neurons = self.sigmas.shape[0] def _calculate_error(self, y):
self.error = mean(abs(self.os - y))
self.relative_error = true_divide(self.error, mean(y)) def _generate_mu(self, x):
n = self.n
extra_neurons = self.extra_neurons # TODO: Make reusable
mu_clusters = loadtxt('clusters100.txt', delimiter='\t') mu_indices = sample(range(n), extra_neurons)
mu_new = x[mu_indices, :]
mu = vstack((mu_clusters, mu_new)) return mu def _calculate_sigmas(self):
neurons = self.neurons
mu = self.mu sigmas = zeros((neurons, ))
for i in xrange(neurons):
dists = [0 for _ in xrange(neurons)]
for j in xrange(neurons):
if i != j:
dists[j] = metrics(mu[i], mu[j])
sigmas[i] = mean(dists)* 2
# max(dists) / sqrt(neurons * 2))
return sigmas def _calculate_phi(self, x):
C = self.workers
neurons = self.neurons
mu = self.mu
sigmas = self.sigmas
phi = self.phi = None
n = self.n def heavy_lifting(c, phi):
s = jobs[c][1] - jobs[c][0]
for k, i in enumerate(xrange(jobs[c][0], jobs[c][1])):
for j in xrange(neurons):
# phi[i, j] = metrics(x[i,:], mu[j])**3)
# phi[i, j] = plateSpine(x[i,:], mu[j]))
# phi[i, j] = invMultiQuadric(x[i,:], mu[j], sigmas[j]))
phi[i, j] = multiQuadric(x[i,:], mu[j], sigmas[j])
# phi[i, j] = gaussian(x[i,:], mu[j], sigmas[j]))
if k % 1000 == 0:
percent = true_divide(k, s)*100
print(c, ': {:2.2f}%'.format(percent))
print(c, ': Done') # distributing the work between 4 workers
shared_array = Array(c_double, n * neurons)
phi = frombuffer(shared_array.get_obj())
phi = phi.reshape((n, neurons)) jobs = []
workers = [] p = n / C
m = n % C
for c in range(C):
jobs.append((c*p, (c+1)*p + (m if c == C-1 else 0)))
worker = Process(target = heavy_lifting, args = (c, phi))
workers.append(worker)
worker.start() for worker in workers:
worker.join() return phi def _do_algebra(self, y):
phi = self.phi w = lstsq(phi, y)[0]
os = dot(w, transpose(phi))
return w, os
# Saving to HDF5
os_h5 = os_handle.create_dataset('os', data = os) def train(self, x, y):
self.n = x.shape[0] ## Initialize HDF5 caches
prefix = self.prefix
postfix = str(self.n) + '-' + str(self.extra_neurons) + '.hdf5'
name_template = prefix + '-{}-' + postfix
phi_handle = self.phi_handle = File(name_template.format('phi'), 'w')
os_handle = self.w_handle = File(name_template.format('os'), 'w')
w_handle = self.w_handle = File(name_template.format('w'), 'w')
mu_handle = self.mu_handle = File(name_template.format('mu'), 'w')
sigma_handle = self.sigma_handle = File(name_template.format('sigma'), 'w') ## Mu generation
mu = self.mu = self._generate_mu(x)
self.neurons = mu.shape[0]
print('({} neurons)'.format(self.neurons))
# Save to HDF5
mu_h5 = mu_handle.create_dataset('mu', data = mu) ## Sigma calculation
print('Calculating Sigma...')
sigmas = self.sigmas = self._calculate_sigmas()
# Save to HDF5
sigmas_h5 = sigma_handle.create_dataset('sigmas', data = sigmas)
print('Done') ## Phi calculation
print('Calculating Phi...')
phi = self.phi = self._calculate_phi(x)
print('Done')
# Saving to HDF5
print('Serializing...')
phi_h5 = phi_handle.create_dataset('phi', data = phi)
del phi
self.phi = phi_h5
print('Done') ## Algebra
print('Doing final algebra...')
w, os = self.w, _ = self._do_algebra(y)
# Saving to HDF5
w_h5 = w_handle.create_dataset('w', data = w)
os_h5 = os_handle.create_dataset('os', data = os) ## Calculate error
self._calculate_error(y)
print('Done') def predict(self, test_data):
mu = self.mu = self.mu.value
sigmas = self.sigmas = self.sigmas.value
w = self.w = self.w.value print('Calculating phi for test data...')
phi = self._calculate_phi(test_data)
os = dot(w, transpose(phi))
savetxt('iok3834.txt', os, delimiter='\n')
return os @property
def summary(self):
return '\n'.join( \
['-----------------',
'Training set size: {}'.format(self.n),
'Hidden layer size: {}'.format(self.neurons),
'-----------------',
'Absolute error : {:02.2f}'.format(self.error),
'Relative error : {:02.2f}%'.format(self.relative_error * 100)]) def predict(test_data):
mu = File('rbf-mu-212243-2400.hdf5', 'r')['mu'].value
sigmas = File('rbf-sigma-212243-2400.hdf5', 'r')['sigmas'].value
w = File('rbf-w-212243-2400.hdf5', 'r')['w'].value n = test_data.shape[0]
neur = mu.shape[0] mu = transpose(mu)
mu.reshape((n, neur)) phi = zeros((n, neur))
for i in range(n):
for j in range(neur):
phi[i, j] = multiQuadric(test_data[i,:], mu[j], sigmas[j]) os = dot(w, transpose(phi))
savetxt('iok3834.txt', os, delimiter='\n')
return os

最新文章

  1. asp的gridview
  2. Elasticsearch: Indexing SQL databases. The easy way
  3. 学习python之练习(三)
  4. 微软BI 之SSIS 系列 - 在 SSIS 中导入 ACCESS 数据库中的数据
  5. paip.php 5.0 5.3 5.4 5.5 -6.0的新特性总结与比较
  6. OneAlert 入门(二)——事件分析
  7. Android开发必知--几种不同对话框的实现
  8. Mybatis-select-返回值类型错误理解
  9. docker 列出每个容器的IP
  10. Linux中使用Electronic WeChat客户端
  11. php RSA加密传输代码示例(轉)
  12. Splash evaljs() 方法
  13. R语言 sub与gsub函数的区别
  14. 在ubuntu下使用visual studio code编写python
  15. NOIP2015Day1T3斗地主(DFS)
  16. Windows下编译live555源码
  17. Linux lamp环境验证码无法显示
  18. 02.树的序列化与反序列化(C++)
  19. Codeforces 1120D (树形DP 或 最小生成树)
  20. OpenCV学习笔记(八) 边缘、线与圆的检测

热门文章

  1. 机器学习vs深度学习及其知识点
  2. Elasticsearch入坑指南之RESTful API
  3. [IIS] [PHP] 500.19 随机出现
  4. Vue的路由
  5. 设计多选按钮ListChooseView
  6. VVeboImageView
  7. 铁乐学Python_day08_文件操作
  8. September 03rd 2017 Week 36th Sunday
  9. 硬盘上的一些算法小题目||and今天看了下林锐的书以及gdb调试 及一些变成算法小题目
  10. JDK1.6在LINUX下的安装配置[转]