You want to build a house on an empty land which reaches all buildings in the shortest amount of distance. You can only move up, down, left and right. You are given a 2D grid of values 0, 1 or 2, where:

  • Each 0 marks an empty land which you can pass by freely.
  • Each 1 marks a building which you cannot pass through.
  • Each 2 marks an obstacle which you cannot pass through.

For example, given three buildings at (0,0)(0,4)(2,2), and an obstacle at (0,2):

1 - 0 - 2 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0

The point (1,2) is an ideal empty land to build a house, as the total travel distance of 3+3+1=7 is minimal. So return 7.

Note:
There will be at least one building. If it is not possible to build such house according to the above rules, return -1.

给一个2纬网格,0代表空地可自由通过,1代表建筑物不能通过,2代表障碍物不可通过,找一个位置建房子,使其到所有建筑物的曼哈顿距离之和最小。返回建房子的位置,如果没有这样的位置返回-1。

解法:BFS,对于每一个建筑进行一次BFS计算到每一个可到达的空地的距离,然后对于每一个空地计算到所有建筑的距离和,求出距离和最短的空地。

Java:

public class Solution {
/**
* @param grid: the 2D grid
* @return: the shortest distance
*/
public int shortestDistance(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0) {
return 0;
} int m = grid.length, n = grid[0].length;
int[][] totalDistance = new int[m][n];
int step = 0, res = 0; for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == 1) {
res = bfs(grid, i, j, step, totalDistance);
step--;
}
}
} return res == Integer.MAX_VALUE ? -1 : res;
} private int bfs(int[][] grid, int x, int y, int step, int[][] totalDistance) {
int res = Integer.MAX_VALUE, m = grid.length, n = grid[0].length;; Queue<Integer> queue = new LinkedList<>();
queue.offer(x * n + y); int curDis = 0;
int[] dirs = {-1, 0, 1, 0, -1}; while (!queue.isEmpty()) {
int l = queue.size();
curDis++;
while (l-- != 0) {
int t = queue.poll();
x = t / n;
y = t % n; for (int i = 0; i < 4; ++i) {
int _x = x + dirs[i], _y = y + dirs[i + 1];
if (_x >= 0 && _x < m && _y >= 0 && _y < n && grid[_x][_y] == step) {
queue.offer(_x * n + _y);
totalDistance[_x][_y] += curDis;
grid[_x][_y]--;
res = Math.min(res, totalDistance[_x][_y]);
}
}
}
}
return res;
}
} 

Java:

public class Solution {
/**
* @param grid: the 2D grid
* @return: the shortest distance
*/
int len;
int m;
int n;
int count;
int sum;
int[] directions = {0, 1, 0, -1, 0};
public int shortestDistance(int[][] grid) {
// write your code here
m = grid.length;
n = grid[0].length;
if (grid == null || m == 0 || n == 0) {
return -1;
} int house = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == 1) {
house++;
}
}
} count = 0;
len = 0;
sum = 0;
int minLen = Integer.MAX_VALUE;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == 0) {
bfs(grid, i, j);
if (count != house) {
continue;
}else {
minLen = Math.min(minLen, sum);
}
}
}
}
return minLen == Integer.MAX_VALUE ? -1: minLen;
} private void bfs(int[][] grid, int i, int j) {
count = 0;
len = 0;
sum = 0;
Queue<Integer> q = new LinkedList<>();
Set<Integer> v = new HashSet<>();
q.offer(i * n + j);
v.add(i * n + j); while (!q.isEmpty()) {
len++;
int size = q.size();
while (size-- != 0) {
int cur = q.poll();
int x = cur / n;
int y = cur % n;
for (int k = 0; k < 4; ++k) {
int nx = x + directions[k];
int ny = y + directions[k + 1];
if (!v.contains(nx * n + ny) && nx >= 0 && nx < m && ny >= 0 && ny < n && grid[nx][ny] != 2) {
if (grid[nx][ny] == 1) {
count++;
sum += len;
v.add(nx * n + ny);
continue;
}
if (grid[nx][ny] == 0) {
q.offer(nx * n + ny);
v.add(nx * n + ny);
}
}
}
}
}
}
}  

Python:

# Time:  O(k * m * n), k is the number of the buildings
# Space: O(m * n) class Solution(object):
def shortestDistance(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
def bfs(grid, dists, cnts, x, y):
dist, m, n = 0, len(grid), len(grid[0])
visited = [[False for _ in xrange(n)] for _ in xrange(m)] pre_level = [(x, y)]
visited[x][y] = True
while pre_level:
dist += 1
cur_level = []
for i, j in pre_level:
for dir in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
I, J = i+dir[0], j+dir[1]
if 0 <= I < m and 0 <= J < n and grid[I][J] == 0 and not visited[I][J]:
cnts[I][J] += 1
dists[I][J] += dist
cur_level.append((I, J))
visited[I][J] = True pre_level = cur_level m, n, cnt = len(grid), len(grid[0]), 0
dists = [[0 for _ in xrange(n)] for _ in xrange(m)]
cnts = [[0 for _ in xrange(n)] for _ in xrange(m)]
for i in xrange(m):
for j in xrange(n):
if grid[i][j] == 1:
cnt += 1
bfs(grid, dists, cnts, i, j) shortest = float("inf")
for i in xrange(m):
for j in xrange(n):
if dists[i][j] < shortest and cnts[i][j] == cnt:
shortest = dists[i][j] return shortest if shortest != float("inf") else -1  

C++:

class Solution {
public:
int shortestDistance(vector<vector<int>>& grid) {
int res = INT_MAX, val = 0, m = grid.size(), n = grid[0].size();
vector<vector<int>> sum = grid;
vector<vector<int>> dirs{{0,-1},{-1,0},{0,1},{1,0}};
for (int i = 0; i < grid.size(); ++i) {
for (int j = 0; j < grid[i].size(); ++j) {
if (grid[i][j] == 1) {
res = INT_MAX;
vector<vector<int>> dist = grid;
queue<pair<int, int>> q;
q.push({i, j});
while (!q.empty()) {
int a = q.front().first, b = q.front().second; q.pop();
for (int k = 0; k < dirs.size(); ++k) {
int x = a + dirs[k][0], y = b + dirs[k][1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == val) {
--grid[x][y];
dist[x][y] = dist[a][b] + 1;
sum[x][y] += dist[x][y] - 1;
q.push({x, y});
res = min(res, sum[x][y]);
}
}
}
--val;
}
}
}
return res == INT_MAX ? -1 : res;
}
};

C++:

class Solution {
public:
int shortestDistance(vector<vector<int>>& grid) {
int res = INT_MAX, buildingCnt = 0, m = grid.size(), n = grid[0].size();
vector<vector<int>> dist(m, vector<int>(n, 0)), cnt = dist;
vector<vector<int>> dirs{{0,-1},{-1,0},{0,1},{1,0}};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == 1) {
++buildingCnt;
queue<pair<int, int>> q;
q.push({i, j});
vector<vector<bool>> visited(m, vector<bool>(n, false));
int level = 1;
while (!q.empty()) {
int size = q.size();
for (int s = 0; s < size; ++s) {
int a = q.front().first, b = q.front().second; q.pop();
for (int k = 0; k < dirs.size(); ++k) {
int x = a + dirs[k][0], y = b + dirs[k][1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 0 && !visited[x][y]) {
dist[x][y] += level;
++cnt[x][y];
visited[x][y] = true;
q.push({x, y});
}
}
}
++level;
}
}
}
}
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == 0 && cnt[i][j] == buildingCnt) {
res = min(res, dist[i][j]);
}
}
}
return res == INT_MAX ? -1 : res;
}
};

  

类似题目:

[LeetCode] 286. Walls and Gates 墙和门

[LeetCode] 296. Best Meeting Point 最佳开会地点

  

All LeetCode Questions List 题目汇总

最新文章

  1. textField和textView限制输入条件
  2. zw版【转发&#183;台湾nvp系列Delphi例程】HALCON HWindowX 02
  3. for循环嵌套的穷举,迭代,以及while的使用和for的转换
  4. iterm2 配色修改
  5. 51nod1265四点共面
  6. heX:用HTML5和Node.JS开发桌面应用
  7. 环境配置与JBoss安装-EJB3.0入门经典学习笔记(1)
  8. python派QQ邮件
  9. GDI绘制时钟效果,与系统时间保持同步,基于Winform
  10. TortoiseSVN文件夹图标不显示
  11. VBS列出windows更新列表
  12. [转]jenkins2 插件安装
  13. 数组之slice,splice,Concact,Reverse,Sort方法
  14. django之缓存的用法, 文件形式与 redis的基本使用
  15. 11g直接路径读、相关参数、10949事件介绍
  16. Windows 10文件夹Shirt+鼠标右键出现“在此处打开命令窗口”
  17. i春秋SRC部落携手同程SRC发布首届漏洞提交任务
  18. Kindle Paper White 使用感受视频上线啦!
  19. Linux下的Make命令实例详解
  20. [.NET开发] C# 合并、拆分PDF文档

热门文章

  1. Django项目中使用plupload插件实现上传图片功能
  2. drf框架总结复习(1)
  3. No Compiler is Provided in this environment Perhaps you are running on JRE rather than a JDK
  4. SpringBoot整合Bubbo
  5. Greenplum常用的gp_toolkit &amp; pg_catalog监控语句
  6. ArrayList 集合:库存管理
  7. 2016android在线测试15-图像 camera2
  8. 「SNOI2019」积木
  9. 微信小程序 Flex局部元素被挤压问题
  10. SpringSecurity的简单入门