本系列文章由 @YhL_Leo 出品,转载请注明出处。

文章链接: http://blog.csdn.net/yhl_leo/article/details/50255069


快速排序算法,由C.A.R.Hoare于1962年提出,算法相当简单精炼,基本策略是随机分治。首先选取一个枢纽元(pivot),然后将数据划分成左右两部分,左边的大于(或等于)枢纽元,右边的小于(或等于枢纽元),最后递归处理左右两部分。分治算法一般分成三个部分:分解、解决以及合并。快排是就地排序,所以就不需要合并了。只需要划分(partition)和解决(递归)两个步骤。因为划分的结果决定递归的位置,所以Partition是整个算法的核心。快速排序最佳运行时间O(nlogn),最坏运行时间O(n2),随机化以后期望运行时间O(nlogn)。

首先来看一段升序快速排序算法的实现代码:

#include <iostream>

using namespace std;

void quickSort(int arr[], int first, int last);
void printArray(int arr[], const int& N); void main()
{
int test[] = { 1, 12, 5, 26, 7, 14, 3, 7, 2 };
int N = sizeof(test)/sizeof(int); cout << "Size of test array :" << N << endl; cout << "Before sorting : " << endl;
printArray(test, N); quickSort(test, 0, N-1); cout << endl << endl << "After sorting : " << endl;
printArray(test, N);
} /**
* Quicksort.
* @param a - The array to be sorted.
* @param first - The start of the sequence to be sorted.
* @param last - The end of the sequence to be sorted.
*/
void quickSort(int arr[], int left, int right)
{
int i = left, j = right;
int tmp;
int pivot = arr[(left + right) / 2]; /* partition */
while (i <= j)
{
while (arr[i] < pivot)
i++;
while (arr[j] > pivot)
j--;
if (i <= j)
{
tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
i++;
j--;
}
} /* recursion */
if (left < j)
quickSort(arr, left, j);
if (i < right)
quickSort(arr, i, right);
} /**
* Print an array.
* @param a - The array.
* @param N - The size of the array.
*/
void printArray(int arr[], const int& N)
{
for(int i = 0 ; i < N ; i++)
cout << "array[" << i << "] = " << arr[i] << endl;
}

1 划分(Partition)

划分分为两个步骤:

  • 选取枢纽元
  • 根据枢纽元所在位置将数组分为左右两部分

1.1 选取枢纽元

所谓的枢纽元,也就是将数组分为两部分的参考元素,选取的方式并不唯一。对于完全随机的数据,枢纽元的选取不是很重要,往往可以直接选取数组的初始位置的元素作为枢纽元。但是实际中,数据往往是部分有序的,如果仍然使用数组两端的数据作为枢纽元,划分的效果往往不好,导致运行时间退化为O(n2)。因此,这里给出的代码就是选取数组中间位置元素:

int pivot = arr[(left + right) / 2];

也有三数取中的方法、随机选取法等。

1.2 根据枢纽元分为左右两部分

上文算法代码使用的是Hoara的双向扫描方法:

/* partition */
while (i <= j)
{
while (arr[i] < pivot)
i++;
while (arr[j] > pivot)
j--;
if (i <= j)
{
tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
i++;
j--;
}
}

除此以外还有单向扫描,双向扫描(区别于Hoara的方法)以及改进的双向扫描等。

1.3 关于双向扫描的思考

  • 内层循环中的while循环条件是用<=/>=还是</>

    • 一般的想法是用<=/>=,忽略与枢纽元相同的元素,这样可以减少不必要的交换,因为这些元素无论放在哪一边都是一样的。但是如果遇到所有元素都一样的情况,这种方法每次都会产生最坏的划分,也就是一边1个元素,令一边n−1个元素,使得时间复杂度变成O(n2)。而如果用严格</>,虽然两边指针每此只挪动1位,但是它们会在正中间相遇,产生一个最好的划分。
    • 也有人分析,认为内循环使用严格</>,可以减少内循环。
    • 因此,建议内循环使用</>
  • 小数组的特殊处理
    • 按照上面的方法,递归会持续到分区只有一个元素。而事实上,当分割到一定大小后,继续分割的效率比插入排序要差。由统计方法得到的数值是50左右,也有采用20的,这样quickSort函数就可以优化成:
void newQuickSort(int arr[], int left, int right, int thresh)
{
if(right - left > thresh)
{
// quick sort for large array
quickSort(arr, left, right);
}
else
{
// insertion sort for small array
insertionSort(arr, left, right);
}
}

2 递归(Recursive)

即重复上述的划分(Partition)操作,最底层的情形是数列的大小是0或者1。快速排序算法和大多数分治排序方法一样,都有两次递归调用,但是快速排序的递归在函数尾部,因此可以实施尾递归优化,从而缩减堆栈的深度,减少算法的时间复杂度。

最后,贴上前文代码运行的过程:


参考文献

最新文章

  1. useful Ansible commands
  2. 2048游戏_QT实现
  3. 加速android源码编译
  4. 能看到U盘占用内存,但看不到文件
  5. 自动化基础普及之selenium是啥?
  6. System.setProperty()
  7. MyBatis 实践 -Mapper与DAO
  8. The 6th Zhejiang Provincial Collegiate Programming Contest-&gt;ProblemK:K-Nice
  9. this.parentMenu.dataRecord.data.testID的作用
  10. 高级UIKit-01(总结基础UIKit)
  11. 理解git对象
  12. Apache Arrow 内存数据
  13. 工控随笔_20_西门子_WinCC的VBS脚本_09_常量和流程控制_02
  14. Java利用hanlp完成语句相似度分析的案例详解
  15. 【流处理】Kafka Stream-Spark Streaming-Storm流式计算框架比较选型
  16. 【CTR】各公司方法
  17. Python decode和encody
  18. umask命令详解
  19. 【BZOJ3105】【CQOI2013】新Nim游戏
  20. 判断手机访问还是pc访问

热门文章

  1. oracle定时器执行一遍就不执行或本就不执行
  2. 定时任务为什么不用Timer
  3. 上机题目(中级)- 两个超级大的整数相加相减 (Java)
  4. Android编程获取手机型号,本机电话号码,sdk版本号及firmware版本号号(即系统版本号号)
  5. 【POJ 3273】 Monthly Expense (二分)
  6. 2014.04.16,读书,读书笔记-《Matlab R2014a完全自学一本通》-第17章 图形用户界面
  7. angularjs1-1
  8. Oracle DBA优化数据库性能心得
  9. Spark SQL概念学习系列之用户自定义函数
  10. python2 与 python3 语法区别--转