比赛链接

A

题解

知识点:贪心。

注意到 \(a[1] \neq 1\) , \(1\) 永远不可能换到前面;\(a[1] = 1\) 可以交换后面任意元素。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; int a[20];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i];
if (a[1] == 1) cout << "YES" << '\n';
else cout << "NO" << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

B

题解

知识点:贪心,枚举。

分两类,一种是纯 \(1\) 或 \(0\) ,另一种是杂合。

显然后者的情况中,把所有数字全选了是最优的;前者枚举一下所有纯子串即可。两种情况,取最大值。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; bool solve() {
int n;
cin >> n;
string s;
cin >> s;
s = "?" + s;
int cnt0 = 0, cnt1 = 0;
for (int i = 1;i <= n;i++) {
if (s[i] == '0') cnt0++;
else cnt1++;
}
ll mx = 1LL * cnt0 * cnt1;
int i = 1, j = 1;
while (i <= n) {
while (j <= n && s[j] == s[i]) j++;
mx = max(mx, 1LL * (j - i) * (j - i));
i = j;
}
cout << mx << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

C

题解

知识点:构造。

注意到,只有 \(a=b\) 或者 \(a\) 每位都不等于 \(b\) 的对应位才可行。

考虑先把 \(a\) 串的 \(1\) 一个一个消掉,然后发现 \(b\) 会出现全 \(0\) 全 \(1\) 的情况,接下来分类讨论:

  1. 如果 \(a = b\) ,那么 \(a\) 中 \(1\) 为偶数时得到的 \(b\) 是 \(0\) ,否则是 \(1\) 。
  2. 如果 \(a\) 每位都不等于 \(b\) 的对应位 ,那么消掉一个 \(1\) 以后又会回到情况1,因此和情况 \(1\) 相反。

全是 \(0\) 直接可以结束,全是 \(1\) 可以先把 \([1,n]\) 取反,然后选择 \([1,1],[2,n]\) 即可。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; bool solve() {
int n;
cin >> n;
string a, b;
cin >> a >> b;
a = "?" + a;
b = "?" + b;
int cnt = 0;
for (int i = 1;i <= n;i++) cnt += a[i] == b[i];
if (cnt != 0 && cnt != n) return 0;
bool flag = cnt == n ? 0 : 1;
vector<pair<int, int>> ans;
for (int i = 1;i <= n;i++) {
if (a[i] == '1') {
ans.push_back({ i, i });
flag ^= 1;
}
}
if (flag) {
ans.push_back({ 1,n });
ans.push_back({ 1,1 });
ans.push_back({ 2,n });
}
cout << "YES" << '\n';
cout << ans.size() << '\n';
for (auto [i, j] : ans) cout << i << ' ' << j << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << "NO" << '\n';
}
return 0;
}

D

题解

知识点:质因数分解,容斥原理,数论。

题目要求我们每个 \(b_i\) 的方案数,然后得到总的方案数。

显然有 \(gcd(a_{i-1},b_i) = a_i\) ,注意到 \(a_i\) 必须是 \(a_{i-1}\) 的因子否则不可能得到答案,因此特判一下 \(a_{i} | a_{i-1}\) 。

于是,我们要找到所有的 \(b_i\) ,满足 \(gcd(\frac{a_{i-1}}{a_i},\frac{b_i}{a_i}) = 1\) 且 \(a_i | b_i\) ,其中 \(\frac{b_i}{a_i} \in [1,\frac{m}{a_i}]\) ,即我们从 \([1,\frac{m}{a_i}]\) 整数中找到和 \(\frac{a_{i-1}}{a_i}\) 互素的个数。

这是一个典型的容斥问题。先对 \(\frac{a_{i-1}}{a_i}\) 分解素因数,得到其素因子种类。我们先计算出区间中包含 \(\frac{a_{i-1}}{a_i}\) 因子的数的个数,注意奇加偶减,然后用总数 \(\frac{m}{a_i}\) 减去个数,即与之互素的数的个数,于是我们就得到了 \(b_i\) 的种类。

遍历每个 \(a_i\) 即可。

时间复杂度 \(O(n(\log a_i + 10\cdot 2^{10}))\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; const int mod = 998244353; int a[200007]; bool vis[100007];
int prime[100007];
int cnt;
void euler_screen(int n) {
for (int i = 2;i <= n;i++) {
if (!vis[i]) prime[++cnt] = i;
for (int j = 1;j <= cnt && i * prime[j] <= n;j++) {
vis[i * prime[j]] = 1;
if (!(i % prime[j])) break;//如果到了i的最小质因子就不用继续,因为接下去的数x一定能被(i,x)之间的数筛掉
}
}
}///欧拉筛,O(n),每个合数只会被最小质因子筛掉 bool solve() {
int n, m;
cin >> n >> m;
for (int i = 1;i <= n;i++) cin >> a[i];
int ans = 1;
for (int i = 2;i <= n;i++) {
if (a[i - 1] % a[i]) {
ans = 0;
break;
} int d = a[i - 1] / a[i];//不能出现的因子
int base = m / a[i];//包含a[i]的数个数 vector<int> ft;//对d分解因子种类
for (int j = 1;j <= cnt && prime[j] <= d / prime[j];j++) {
if (d % prime[j] == 0) ft.push_back(prime[j]);
while (d % prime[j] == 0) d /= prime[j];
}
if (d > 1) ft.push_back(d); int sum = 0;//容斥原理,求[1,base]中没有d中因子的数个数
for (int j = 1; j < (1 << ft.size()); j++) {
int mul = 1, feat = 0;
for (int k = 0; k < ft.size(); k++) {
if (j & (1 << k)) {
mul *= ft[k];
feat++;
}
}
if (feat & 1) sum = (sum + 1LL * base / mul % mod) % mod;
else sum = (sum - 1LL * base / mul % mod + mod) % mod;
}
sum = (base - sum + mod) % mod; ans = 1LL * ans * sum % mod;
}
cout << ans << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
euler_screen(100007);
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

最新文章

  1. vs 调试的时候 使用IP地址,局域网的设备可以访问并调试
  2. 安装和配置SVN服务器Subversion、客户端TortoiseSVN和Visual Studio插件AnkhSvn
  3. SQL异常:ORA-00936: missing expression
  4. EntityFramework SQLiteCodeFirst 自动创建数据库 关闭级联删除
  5. 《Java程序性能优化》学习笔记 设计优化
  6. 查询记录rs.previous()使用
  7. Logistic Regression 模型简介
  8. 【MML】华为MML AAA接口联调,Java版本
  9. HTML/CSS基础知识(一)
  10. Http请求中请求头Content-Type讲解
  11. [转]安装ambari
  12. 根据IP获取国家
  13. mkvirtualenv command not found解决
  14. Qt ------ QTableView QTableWidget
  15. mysql文件目录详解 LINUX
  16. nginix.conf 中的gzip模块设置
  17. 201621123014《Java程序设计》第六周学习总结
  18. Qt 学习之路 2(13):对话框简介
  19. if转switch
  20. (八)Thymeleaf的 th:* 属性之—— 模板布局&amp; th:with&amp; 属性优先级

热门文章

  1. java基础———break,continue
  2. OpenStack云计算平台部署(单节点)
  3. 如何结合整洁架构和MVP模式提升前端开发体验(二) - 代码实现篇
  4. C++ 指针与二维数组名
  5. 注解@DependsOn解析
  6. 在终端启动Python时报错的解决
  7. 发布日志- kratos v2.1.4 发布!
  8. Kubernetes Operator: CRD
  9. Elasticsearch:管理 Elasticsearch 内存并进行故障排除
  10. 基于SqlSugar的开发框架循序渐进介绍(14)-- 基于Vue3+TypeScript的全局对象的注入和使用