题目链接

BZOJ3456

题解

据说这题是多项式求逆

我太弱不会QAQ,只能\(O(nlog^2n)\)分治\(NTT\)

设\(f[i]\)表示\(i\)个节点的简单无向连通图的数量

考虑转移,直接求不好求,我们知道\(n\)个点无向图的数量是\(2^{{n \choose 2}}\)的,考虑用总数减去不连通的

既然图不连通,那么和\(1\)号点联通的点数一定小于\(n\),我们枚举和\(1\)号点所在联通块大小,就可以得到式子:

\[f[n] = 2^{{n \choose 2}} - \sum\limits_{i = 1}^{n - 1}{n - 1 \choose i - 1}2^{{n - i \choose 2}}f[i]
\]

展开组合数变形得:

\[f[n] = 2^{{n \choose 2}} - (n - 1)!\sum\limits_{i = 1}^{n - 1}\frac{f[i] * i}{i!} * \frac{2^{n - i \choose 2}}{(n - i)!}
\]

分治NTT即可

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define cls(s) memset(s,0,sizeof(s))
#define LL long long int
#define res register
using namespace std;
const int maxn = 500000,maxm = 100005,INF = 1000000000,P = 1004535809;
const int G = 3;
int N,f[maxn],fac[maxn],fv[maxn],inv[maxn],C2[maxn];
int A[maxn],B[maxn],R[maxn],w[2][maxn],L,n,m;
inline int qpow(int a,LL b){
int ans = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) ans = 1ll * ans * a % P;
return ans;
}
inline void NTT(int* a,int f){
for (res int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (res int i = 1; i < n; i <<= 1){
int gn = w[f][i];
for (res int j = 0; j < n; j += (i << 1)){
int g = 1,x,y;
for (res int k = 0; k < i; k++,g = 1ll * g * gn % P){
x = a[j + k]; y = 1ll * g * a[j + k + i] % P;
a[j + k] = (x + y) % P; a[j + k + i] = (x - y + P) % P;
}
}
}
if (f == 1) return;
int nv = qpow(n,P - 2);
for (res int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
}
void solve(int l,int r){
if (l == r){
f[l] = ((C2[l] - 1ll * fac[l - 1] * f[l] % P) % P + P) % P;
return;
}
int mid = l + r >> 1,t;
solve(l,mid);
m = (mid - l) + (r - l); L = 0;
for (n = 1; n <= m; n <<= 1) L++;
for (int i = 0; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
for (int i = 0; i < n; i++) A[i] = B[i] = 0;
t = mid - l + 1;
for (int i = 0; i < t; i++)
A[i] = 1ll * f[l + i] * fv[l + i - 1] % P;
t = r - l;
B[0] = 0; for (int i = 1; i <= t; i++)
B[i] = 1ll * C2[i] * fv[i] % P;
NTT(A,1); NTT(B,1);
for (int i = 0; i < n; i++) A[i] = 1ll * A[i] * B[i] % P;
NTT(A,0);
for (int i = mid + 1; i <= r; i++){
f[i] = (f[i] + A[i - l]) % P;
}
solve(mid + 1,r);
}
int main(){
scanf("%d",&N);
fac[0] = fac[1] = inv[0] = inv[1] = fv[0] = fv[1] = 1;
for (res int i = 2; i <= N; i++){
fac[i] = 1ll * fac[i - 1] * i % P;
inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
fv[i] = 1ll * fv[i - 1] * inv[i] % P;
}
for (res int i = 1; i <= N; i++){
C2[i] = qpow(2,1ll * i * (i - 1) / 2);
}
for (res int i = 1; i < maxn; i <<= 1){
w[1][i] = qpow(G,(P - 1) / (i << 1));
w[0][i] = qpow(G,(-(P - 1) / (i << 1) % (P - 1) + (P - 1)) % (P - 1));
}
solve(1,N);
printf("%d\n",f[N]);
return 0;
}

最新文章

  1. 窥探Swift之别样的枚举类型
  2. 6.openssl rsautl和openssl pkeyutl
  3. Android Http请求方法汇总
  4. 关于imp无法导出空表
  5. IOS开发UI基础storyboard相关概念的认识
  6. [51NOD1024] 矩阵中不重复的元素(数学,精度)
  7. (转) C++ static、const和static const 以及它们的初始化
  8. iOS调试程序时,启动应用失败的解决办法
  9. 快速排序算法 Quick sort
  10. Codeforces Round #205 (Div. 2) : B
  11. LSI SAS 2208 配置操作
  12. ABAP开发实用快捷键
  13. 中介者模式(Mediator)
  14. java常用集合总结
  15. C#学习笔记之值类型与引用类型
  16. flask 第三章 特殊装饰器 CBV Flask-Session WTForms
  17. python的bit_length方法
  18. 关于vagrant一个虚拟机搭建多个项目配置(总结)
  19. Snowflake Snow Snowflakes POJ - 3349 Hash
  20. 狄克斯特拉算法(Python实现)

热门文章

  1. Java分享笔记:泛型机制的程序演示
  2. SAP标准导出功能 - 删除默认选定格式
  3. Java web--过滤器
  4. 封装动态数组类Array
  5. Effective Approaches to Attention-based Neural Machine Translation(Global和Local attention)
  6. 使用shell脚本依据分区信息分批次的下载hive表格数据
  7. 学习python第十二天,函数4 生成器generator和迭代器Iterator
  8. Description POJ1703
  9. 笔记-scrapy-item
  10. 1,VMware与Centos系统安装