Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多进程(Thread)的情况下,不能发挥多核的优势。而使用多进程(Multiprocess),则可以发挥多核的优势真正地提高效率。

对比实验

资料显示,如果多线程的进程是CPU密集型的,那多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程;如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率。所以我们根据实验对比不同场景的效率

操作系统 CPU 内存 硬盘
Windows 10 双核 8GB 机械硬盘
(1)引入所需要的模块
 
 
1
2
3
4
import requests
import time
from threading import Thread
from multiprocessing import Process
(2)定义CPU密集的计算函数
 
 
 
 
 

Python

 
1
2
3
4
5
6
7
def count(x, y):
    # 使程序完成150万计算
    c = 0
    while c < 500000:
        c += 1
        x += x
        y += y
(3)定义IO密集的文件读写函数
 
 
1
2
3
4
5
6
7
8
9
10
def write():
    f = open("test.txt", "w")
    for x in range(5000000):
        f.write("testwrite\n")
    f.close()
 
def read():
    f = open("test.txt", "r")
    lines = f.readlines()
    f.close()
(4) 定义网络请求函数
 
 
1
2
3
4
5
6
7
8
9
10
_head = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36'}
url = "http://www.tieba.com"
def http_request():
    try:
        webPage = requests.get(url, headers=_head)
        html = webPage.text
        return {"context": html}
    except Exception as e:
        return {"error": e}
(5)测试线性执行IO密集操作、CPU密集操作所需时间、网络请求密集型操作所需时间
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# CPU密集操作
t = time.time()
for x in range(10):
    count(1, 1)
print("Line cpu", time.time() - t)
 
# IO密集操作
t = time.time()
for x in range(10):
    write()
    read()
print("Line IO", time.time() - t)
 
# 网络请求密集型操作
t = time.time()
for x in range(10):
    http_request()
print("Line Http Request", time.time() - t)

输出

  • CPU密集:95.6059999466、91.57099986076355 92.52800011634827、 99.96799993515015
  • IO密集:24.25、21.76699995994568、21.769999980926514、22.060999870300293
  • 网络请求密集型: 4.519999980926514、8.563999891281128、4.371000051498413、4.522000074386597、14.671000003814697
(6)测试多线程并发执行CPU密集操作所需时间
 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
counts = []
t = time.time()
for x in range(10):
    thread = Thread(target=count, args=(1,1))
    counts.append(thread)
    thread.start()
 
e = counts.__len__()
while True:
    for th in counts:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print(time.time() - t)

Output: 99.9240000248 、101.26400017738342、102.32200002670288

(7)测试多线程并发执行IO密集操作所需时间
 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
def io():
    write()
    read()
 
t = time.time()
ios = []
t = time.time()
for x in range(10):
    thread = Thread(target=count, args=(1,1))
    ios.append(thread)
    thread.start()
 
e = ios.__len__()
while True:
    for th in ios:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print(time.time() - t)

Output: 25.69700002670288、24.02400016784668

(8)测试多线程并发执行网络密集操作所需时间
 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
t = time.time()
ios = []
t = time.time()
for x in range(10):
    thread = Thread(target=http_request)
    ios.append(thread)
    thread.start()
 
e = ios.__len__()
while True:
    for th in ios:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print("Thread Http Request", time.time() - t)

Output: 0.7419998645782471、0.3839998245239258、0.3900001049041748

(9)测试多进程并发执行CPU密集操作所需时间
 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
counts = []
t = time.time()
for x in range(10):
    process = Process(target=count, args=(1,1))
    counts.append(process)
    process.start()
e = counts.__len__()
while True:
    for th in counts:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print("Multiprocess cpu", time.time() - t)

Output: 54.342000007629395、53.437999963760376

(10)测试多进程并发执行IO密集型操作
 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
t = time.time()
ios = []
t = time.time()
for x in range(10):
    process = Process(target=io)
    ios.append(process)
    process.start()
 
e = ios.__len__()
while True:
    for th in ios:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print("Multiprocess IO", time.time() - t)

Output: 12.509000062942505、13.059000015258789

(11)测试多进程并发执行Http请求密集型操作
 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
t = time.time()
httprs = []
t = time.time()
for x in range(10):
    process = Process(target=http_request)
    ios.append(process)
    process.start()
 
e = httprs.__len__()
while True:
    for th in httprs:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print("Multiprocess Http Request", time.time() - t)

Output: 0.5329999923706055、0.4760000705718994

实验结果

  CPU密集型操作 IO密集型操作 网络请求密集型操作
线性操作 94.91824996469 22.46199995279 7.3296000004
多线程操作 101.1700000762 24.8605000973 0.5053332647
多进程操作 53.8899999857 12.7840000391 0.5045000315

通过上面的结果,我们可以看到:

    • 多线程在IO密集型的操作下似乎也没有很大的优势(也许IO操作的任务再繁重一些就能体现出优势),在CPU密集型的操作下明显地比单线程线性执行性能更差,但是对于网络请求这种忙等阻塞线程的操作,多线程的优势便非常显著了
    • 多进程无论是在CPU密集型还是IO密集型以及网络请求密集型(经常发生线程阻塞的操作)中,都能体现出性能的优势。不过在类似网络请求密集型的操作上,与多线程相差无几,但却更占用CPU等资源,所以对于这种情况下,我们可以选择多线程来执行

最新文章

  1. TCP的关闭,到底是几次握手,每次的标志位到底是什么!
  2. AutoHotkey之自问自答
  3. mysql 主从复制 实践
  4. javamail 学习及实例
  5. linq中AsEnumerable和AsQueryable的区别
  6. iOS 网络处理注意点
  7. BZOJ 2754: [SCOI2012]喵星球上的点名
  8. 匿名类型和Object转换
  9. 接上一篇博客(解决-Dmaven.multiModuleProjectDirectory system property is not set. Check $M2_HOME environment variable and mvn script match. )
  10. typedef函数指针那些事
  11. .net通用权限框架B/S (四)--DAL数据层以及数据接口
  12. eclipse中注释的代码依然会执行的解决方法
  13. hdu 5475(线段树)
  14. Ultimate Facebook Messenger for Business Guide (Feb 2019)
  15. None.js 第五步 Buffer(缓冲区)
  16. 求矩形面积(问题来自PythonTip)
  17. AangularJS过滤器详解
  18. live555源码学习笔记之TaskScheduler
  19. xadmin系列之启动、注册、分发
  20. Java编程的逻辑 (57) - 二进制文件和字节流

热门文章

  1. MHA非root用户搭建测试
  2. angr进阶(6)绕过反调试
  3. MySQL数据库实用技巧
  4. web缓存策略之HTTP缓存大全
  5. 简单了解http协议-1
  6. [转]Gitlab-CI持续集成之Runner配置和CI脚本
  7. sql server 2008R2 导出insert 语句(转载)
  8. .NET: 使用.NET Core CLI开发应用程序
  9. mybatis基础(上)
  10. 异步加载js的三种方法