(  推荐 : http://blog.csdn.net/insistgogo/article/details/11081025 )

问题描述 : 已知一个容量为 V 的背包 和 N 件物品 , 第 i 件物品的价值是 value[ i ] 体重为 weight[ i ]  。

条件 : 每件物品有无限多个 , 能放多少就放多少 。

问题 : 在不超过背包容量的前提下 , 问最多能获得的最大收益 。

基本思路 : 直接扩展01背包

  区别于 01背包 , 完全背包中的物品可以放入0件 、 1件 、 2件 ... , 所以就可以写这样的状态转移方程 。

dp[j] = max ( dp[j] , dp[j-k*weight[i]]+k*value[i] ) ;  k <= v / weight[i]

  

  这样写的意思是 , 同 01背包一样 , 我遍历所有物品 , 在每个物品下遍历所有体积 ,  完全背包只需要在加一点就是在每种物品的每个体积下,我在遍历所有可能该种物品可以放多少个 。

给出完整的代码 :

  

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std ;
#define Max(a,b) a>b?a:b int weight[10] ;
int value[10] ;
int dp[100] ; int main ( ) {
int n , v ; cin >> n >> v ;
for ( int i = 1 ; i <= n ; i++ )
cin >> weight[i] >> value[i] ; for ( int i = 1 ; i <= n ; i++ ) {
for ( int j = v ; j >= weight[i] ; j-- ) {
for ( int k = 1 ; k <= v/weight[i] ; k++ ) {
dp[j] = Max ( dp[j] , dp[j-k*weight[i]]+k*value[i] ) ;
}
}
} cout <<dp[v] ;
return 0 ;
}

  

代码优化 :

  完全背包有一种很简单有效的优化 , 两件物品 重量 为 we[i] , we[j] , 价值为va[i] , va[j] 。若we[i] < w[j] ,并且 va[i] > va[j] , 则将物品 j 去掉 , 不用考虑 。但我觉得这样做的话还是不太好 , 虽然没在网上找到反例 。

转化为01背包求解 :

  对于每件物品 , 背包最多能装的件数是  v / weight[i] , 因此就可以进行一个预处理 , 增加所有可以增加的物品 , 直到每种物品的数量都达到 v / weight[i] 。此时在看这个问题 , 就可以完全转变为 01 背包 。

时间复杂度的分析:O(NNew*V),其中V表示扩展前背包容量,NNew表示扩展后物品的个数,NNew = Σ(V/Weight[i](向下取整))

对物品拆分 , 拆成 2 进制的形势

  具体思路:把第i种物品拆成费用为weight[i]*2^k、价值为w[i]*2^k的若干件物品,其中k满足weight[i]*2^k<=V。

  二进制思想 : 因为不管最优策略选几件第 i 件物品 , 总可以表示成若干个 2^k 的和 。

盗的代码 , 表示还不会写 :

  

    #include <iostream>
#include <vector>
#include <assert.h>
using namespace std;
/*
f[v]:表示第i件物品放入容量为v的背包后,获得的最大容量
f[v] = max(f[v],f[v - weight[i]] + value[i]);
初始条件:f[0] = 0;
*/ const int N = 3;
const int V = 20;//5
int weight[N + 1] = {0,3,2,2};
int Value[N + 1] = {0,5,10,20}; int NNew = 0;
vector<int> weightVector;
vector<int> Valuevector;
int f[V + 1] = {0};
/*拆分物品*/
void SplitItem()
{
//从1开始
weightVector.push_back(0);
Valuevector.push_back(0);
//开始拆分
int nPower = 1;
for (int i = 1;i <= N;i++)
{
nPower = 1;
while (nPower * weight[i] <= V)
{
weightVector.push_back(nPower * weight[i]);
Valuevector.push_back(nPower * Value[i]);
nPower <<= 1;
}
}
} int Completeknapsack()
{
//拆分物品
SplitItem();
//转化为01背包处理
NNew = weightVector.size() - 1;//多加了一个0,要减去 for (int i = 1;i <= NNew;i++)//物品个数变化
{
for (int v = V;v >= weightVector[i];v--)//背包容量仍是V
{
f[v] = max(f[v],f[v - weightVector[i]] + Valuevector[i]);
}
} return f[NNew];
}
int main()
{
cout<<Completeknapsack()<<endl;
system("pause");
return 1;
}

(N * V 的算法)

  在完全背包中,v变化的区间是顺序循环的原因:完全背包的特点是每种物品可选无限件,在求解加选第i种物品带来的收益f[i][v]时,在状态f[i][v-c[i]]中已经尽可能多的放入物品i了,此时在f[i][v-c[i]]的基础上,我们可以再次放入一件物品i,此时也是在不超过背包容量的基础下,尽可能多的放入物品i。

  代码示例 :

 

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std ;
#define Max(a,b) a>b?a:b int weight[10] ;
int value[10] ;
int dp[100] ; int main ( ) {
int n , v ; cin >> n >> v ;
for ( int i = 1 ; i <= n ; i++ )
cin >> weight[i] >> value[i] ; for ( int i = 1 ; i <= n ; i++ ) {
for ( int j = weight[i] ; j <= v ; j++ ) {
dp[j] = Max ( dp[j] , dp[j-weight[i]]+value[i] ) ; // 对于每件物品 , 在不超背包体积的前提下 , 尽可能多的放
}
} cout <<dp[v] ;
return 0 ;
}

最新文章

  1. Intel VT入门
  2. 思科简单教程CCNA
  3. 转:ie6与firefox操作iframe中DOM节点的一点不同
  4. R语言学习笔记 之 可视化地研究参议员相似性
  5. Ubuntu消息菜单(MessagingMenu)API
  6. 判断一个key 是否在map中存在
  7. 64bit ubuntu14.04编译PlatinumKit出现的arm-linux-androideabi-g++: not found错误解决方法
  8. [Swust OJ 581]--彩色的石子(状压dp)
  9. hdu 4372 第一类stirling数的应用/。。。好题
  10. redis cluster中添加删除重分配节点例子
  11. STL中map的用法
  12. jenkins 安装部署 springboot启动
  13. OC语言的Block与Protocol(协议)
  14. Linux内核内存管理算法Buddy和Slab: /proc/meminfo、/proc/buddyinfo、/proc/slabinfo
  15. 三、oneinstack
  16. config-toolkit之config-face
  17. centos7.5安装minikube kubernetes
  18. 压缩VBox虚拟机空间的方法
  19. Servlet自动注入Spring容器中的Bean解决方法
  20. js获取checkbox中所有选中值及input后面所跟的文本

热门文章

  1. centOS 重启 php-fpm
  2. Python 数据类型,常用函数方法分类
  3. el-tree文本内容过多显示不完全问题(解决)
  4. linux模块加载竞争
  5. 1626 - Brackets sequence——[动态规划]
  6. H3C 根据子网数划分子网
  7. 【u202】家庭作业
  8. linux 一次对一个用户限制存取
  9. 小程序 scroll-view 左右横向滑动没有效果(无法滑动)问题
  10. H3C配置热键--hotkey---系统视图