首先,Blob使用的小例子(通过运行结果即可知道相关功能):

#include <vector>
#include <caffe/blob.hpp>
#include <caffe/util/io.hpp>//磁盘读写
#include <iostream> using namespace std;
using namespace caffe; int main()
{
Blob<float> a;
cout<<"Size: "<<a.shape_string()<<endl;
a.Reshape(,,,);
cout<<"Size: "<<a.shape_string()<<endl;
a.Reshape(,,,);
cout<<"Size: "<<a.shape_string()<<endl; float* p=a.mutable_cpu_data();
float* q=a.mutable_cpu_diff();
for(int i=;i<a.count();i++)
{
p[i]=i;
q[i]=a.count()--i;
}
cout<<"L1: "<<a.asum_data()<<endl;
cout<<"L2: "<<a.sumsq_data()<<endl;
//a.Update(); //磁盘读写
BlobProto bp;
a.ToProto(&bp,true);//a序列化,连带diff(默认不带)
WriteProtoToBinaryFile(bp,"a.blob");
BlobProto bp2;
ReadProtoFromBinaryFileOrDie("a.blob",&bp2);
Blob<float> b;
b.FromProto(bp2,true);//从序列化对象中克隆b(连同形状)
b.Update();
cout<<"L1: "<<b.asum_data()<<endl;
cout<<"L2: "<<b.sumsq_data()<<endl; return ;
}

编译:

export LD_LIBRARY_PATH=./build/lib/:$LD_LIBRARY_PATH

g++ -o app ./bambootry/try.cpp -I ./include/ -D CPU_ONLY \
-I ./.build_release/src/ \
-L ./.build_release/lib/ -lcaffe -lglog -lboost_system

运行结果:

进入正题,代码注释

src/caffe/proto/caffe.proto中Blob部分

// Specifies the shape (dimensions) of a Blob.表示Blob每个维度的大小
message BlobShape {
repeated int64 dim = [packed = true];//packed表示这些值在内存中紧密排布没有空洞
}
//该结构描述Blob在磁盘中序列化的形态
message BlobProto {
optional BlobShape shape = ; //可选,包括一个BlobShape对象
repeated float data = [packed = true]; //包括若干浮点元素,存储数据或权重,元素数目由shape或(num,channels,height,weight)决定
repeated float diff = [packed = true]; //包括若干浮点元素,用于存储增量信息,维度与data数组一致
repeated double double_data = [packed = true]; //data 类型double
repeated double double_diff = [packed = true]; //diff 类型double // 4D dimensions -- deprecated. Use "shape" instead.可选,维度信息。新版本推荐使用shape
optional int32 num = [default = ];
optional int32 channels = [default = ];
optional int32 height = [default = ];
optional int32 width = [default = ];
}

include/caffe/blob.hpp (其中使用了SyncedMemory类,具体有关该类的内容在其他文件中) 作为基本计算单元服务 Layer Net Solver等

 #ifndef CAFFE_BLOB_HPP_
#define CAFFE_BLOB_HPP_ #include <algorithm>
#include <string>
#include <vector> #include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h" //由protoc生成的头文件,声明了BlobProto、BlobShape等遵循caffe.proto协议的数据结构
#include "caffe/syncedmem.hpp" //CPU和GPU共享内存类,用于数据同步 const int kMaxBlobAxes = ; //Blob最大维数 namespace caffe { /**
* @brief A wrapper around SyncedMemory holders serving as the basic
* computational unit through which Layer%s, Net%s, and Solver%s
* interact.
*
* TODO(dox): more thorough description.
*/
template <typename Dtype>
class Blob {
public:
Blob()
: data_(), diff_(), count_(), capacity_() {} //默认构造函数 /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
explicit Blob(const int num, const int channels, const int height,
const int width); //显式构造函数,避免隐式数据类型转换
explicit Blob(const vector<int>& shape); /// @brief Deprecated; use <code>Reshape(const vector<int>& shape)</code>.
// 变形函数,根据输入参数重新设置当前Blob形状,必要时重新分配内存
void Reshape(const int num, const int channels, const int height,
const int width);
/**
* @brief Change the dimensions of the blob, allocating new memory if
* necessary.
*
* This function can be called both to create an initial allocation
* of memory, and to adjust the dimensions of a top blob during Layer::Reshape
* or Layer::Forward. When changing the size of blob, memory will only be
* reallocated if sufficient memory does not already exist, and excess memory
* will never be freed.
*
* Note that reshaping an input blob and immediately calling Net::Backward is
* an error; either Net::Forward or Net::Reshape need to be called to
* propagate the new input shape to higher layers.
*/
void Reshape(const vector<int>& shape);
void Reshape(const BlobShape& shape);
void ReshapeLike(const Blob& other);
//得到Blob形状字符串,用于打印log,见Caffe运行log
//例如: Top Shape: 100 1 28 28 (78400)
inline string shape_string() const {
ostringstream stream;
for (int i = ; i < shape_.size(); ++i) {
stream << shape_[i] << " ";
}
stream << "(" << count_ << ")";
return stream.str();
}
//返回blob形状
inline const vector<int>& shape() const { return shape_; }
/**
* @brief Returns the dimension of the index-th axis (or the negative index-th
* axis from the end, if index is negative).
*
* @param index the axis index, which may be negative as it will be
* "canonicalized" using CanonicalAxisIndex.
* Dies on out of range index.
*/
//返回某一维度尺寸
inline int shape(int index) const {
return shape_[CanonicalAxisIndex(index)];
}
//返回维度数目
inline int num_axes() const { return shape_.size(); }
//返回Blob中元素总数
inline int count() const { return count_; } /**
* @brief Compute the volume of a slice; i.e., the product of dimensions
* among a range of axes.
*
* @param start_axis The first axis to include in the slice.
*
* @param end_axis The first axis to exclude from the slice.
*/
//返回Blob中某几个维度子集的元素总数
inline int count(int start_axis, int end_axis) const {
CHECK_LE(start_axis, end_axis);//保证start_sxis<=end_axis
CHECK_GE(start_axis, );//保证start_sxis>=0
CHECK_GE(end_axis, );//保证end_axis>=0
CHECK_LE(start_axis, num_axes());//保证start_sxis小于总维度数目
CHECK_LE(end_axis, num_axes());//保证end_axis小于总维度数目
int count = ;
for (int i = start_axis; i < end_axis; ++i) {
count *= shape(i);
}
return count;
}
/**
* @brief Compute the volume of a slice spanning from a particular first
* axis to the final axis.
*
* @param start_axis The first axis to include in the slice.
*/
//计算从某一个维度开始的元素总数
inline int count(int start_axis) const {
return count(start_axis, num_axes());
} /**
* @brief Returns the 'canonical' version of a (usually) user-specified axis,
* allowing for negative indexing (e.g., -1 for the last axis).
*
* @param axis_index the axis index.
* If 0 <= index < num_axes(), return index.
* If -num_axes <= index <= -1, return (num_axes() - (-index)),
* e.g., the last axis index (num_axes() - 1) if index == -1,
* the second to last if index == -2, etc.
* Dies on out of range index.
*/
//转换坐标轴索引
inline int CanonicalAxisIndex(int axis_index) const {
CHECK_GE(axis_index, -num_axes())//保证axis_index>=-num_axes()
<< "axis " << axis_index << " out of range for " << num_axes()
<< "-D Blob with shape " << shape_string();
CHECK_LT(axis_index, num_axes())//保证axis_index<=num_axes()
<< "axis " << axis_index << " out of range for " << num_axes()
<< "-D Blob with shape " << shape_string();
if (axis_index < ) {
return axis_index + num_axes();//负索引号表示从后向前索引,例如-1为最后一个,即正索引号的N-1
}
return axis_index;
} /// @brief Deprecated legacy shape accessor num: use shape(0) instead.
inline int num() const { return LegacyShape(); }
/// @brief Deprecated legacy shape accessor channels: use shape(1) instead.
inline int channels() const { return LegacyShape(); }
/// @brief Deprecated legacy shape accessor height: use shape(2) instead.
inline int height() const { return LegacyShape(); }
/// @brief Deprecated legacy shape accessor width: use shape(3) instead.
inline int width() const { return LegacyShape(); }
inline int LegacyShape(int index) const {
CHECK_LE(num_axes(), )
<< "Cannot use legacy accessors on Blobs with > 4 axes.";
CHECK_LT(index, );
CHECK_GE(index, -);
if (index >= num_axes() || index < -num_axes()) {
// Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse
// indexing) -- this special case simulates the one-padding used to fill
// extraneous axes of legacy blobs.
return ;
}
return shape(index);
}
//offset函数用于计算偏移量
inline int offset(const int n, const int c = , const int h = ,
const int w = ) const {
CHECK_GE(n, );
CHECK_LE(n, num());
CHECK_GE(channels(), );
CHECK_LE(c, channels());
CHECK_GE(height(), );
CHECK_LE(h, height());
CHECK_GE(width(), );
CHECK_LE(w, width());
return ((n * channels() + c) * height() + h) * width() + w;
} inline int offset(const vector<int>& indices) const {
CHECK_LE(indices.size(), num_axes());
int offset = ;
for (int i = ; i < num_axes(); ++i) {
offset *= shape(i);
if (indices.size() > i) {
CHECK_GE(indices[i], );
CHECK_LT(indices[i], shape(i));
offset += indices[i];
}
}
return offset;
}
/**
* @brief Copy from a source Blob.
*
* @param source the Blob to copy from
* @param copy_diff if false, copy the data; if true, copy the diff
* @param reshape if false, require this Blob to be pre-shaped to the shape
* of other (and die otherwise); if true, Reshape this Blob to other's
* shape if necessary
*/
//拷贝Blob到当前Blob
void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
bool reshape = false);
//下面为一系列存取器
inline Dtype data_at(const int n, const int c, const int h,
const int w) const {
return cpu_data()[offset(n, c, h, w)];
} inline Dtype diff_at(const int n, const int c, const int h,
const int w) const {
return cpu_diff()[offset(n, c, h, w)];
} inline Dtype data_at(const vector<int>& index) const {
return cpu_data()[offset(index)];
} inline Dtype diff_at(const vector<int>& index) const {
return cpu_diff()[offset(index)];
} inline const shared_ptr<SyncedMemory>& data() const {
CHECK(data_);
return data_;
} inline const shared_ptr<SyncedMemory>& diff() const {
CHECK(diff_);
return diff_;
} const Dtype* cpu_data() const;//只读访问cpu data
void set_cpu_data(Dtype* data);//设置cpu data
const int* gpu_shape() const;
const Dtype* gpu_data() const;//只读访问gpu data
void set_gpu_data(Dtype* data);//设置gpu data
const Dtype* cpu_diff() const;//只读访问cpu diff
const Dtype* gpu_diff() const;//只读访问gpu diff
Dtype* mutable_cpu_data();//读写访问
Dtype* mutable_gpu_data();//读写访问
Dtype* mutable_cpu_diff();//读写访问
Dtype* mutable_gpu_diff();//读写访问
void Update();//Blob更新运算
void FromProto(const BlobProto& proto, bool reshape = true);//反序列化函数,从BlobProto中恢复一个Blob对象
void ToProto(BlobProto* proto, bool write_diff = false) const;//序列化函数,将内存中的Blob对象保存到BlobProto中 /// @brief Compute the sum of absolute values (L1 norm) of the data.
Dtype asum_data() const;//计算data的L1范数,即绝对值求和
/// @brief Compute the sum of absolute values (L1 norm) of the diff.
Dtype asum_diff() const;//计算diff的L1范数,即绝对值求和
/// @brief Compute the sum of squares (L2 norm squared) of the data.
Dtype sumsq_data() const;//计算data的平方和,用于L2范数
/// @brief Compute the sum of squares (L2 norm squared) of the diff.
Dtype sumsq_diff() const;//计算diff的平方和,用于L2范数 /// @brief Scale the blob data by a constant factor.
void scale_data(Dtype scale_factor);//data乘一个标量
/// @brief Scale the blob diff by a constant factor.
void scale_diff(Dtype scale_factor);//diff乘一个标量 /**
* @brief Set the data_ shared_ptr to point to the SyncedMemory holding the
* data_ of Blob other -- useful in Layer%s which simply perform a copy
* in their Forward pass.
*
* This deallocates the SyncedMemory holding this Blob's data_, as
* shared_ptr calls its destructor when reset with the "=" operator.
*/
void ShareData(const Blob& other);
/**
* @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the
* diff_ of Blob other -- useful in Layer%s which simply perform a copy
* in their Forward pass.
*
* This deallocates the SyncedMemory holding this Blob's diff_, as
* shared_ptr calls its destructor when reset with the "=" operator.
*/
void ShareDiff(const Blob& other);//共享另一个Blob的diff_ bool ShapeEquals(const BlobProto& other); protected:
shared_ptr<SyncedMemory> data_;//存放指向data的指针
shared_ptr<SyncedMemory> diff_;//存放指向diff的指针
shared_ptr<SyncedMemory> shape_data_;
vector<int> shape_;
int count_;//存放有效元素数目信息
int capacity_;//存放Blob容器的容量信息 DISABLE_COPY_AND_ASSIGN(Blob);//禁止拷贝构造函数、赋值运算符重载
}; // class Blob } // namespace caffe #endif // CAFFE_BLOB_HPP_

include/caffe/syncedmem.hpp

 #ifndef CAFFE_SYNCEDMEM_HPP_
#define CAFFE_SYNCEDMEM_HPP_ #include <cstdlib> #ifdef USE_MKL
#include "mkl.h"
#endif #include "caffe/common.hpp" namespace caffe { // If CUDA is available and in GPU mode, host memory will be allocated pinned,
// using cudaMallocHost. It avoids dynamic pinning for transfers (DMA).
// The improvement in performance seems negligible in the single GPU case,
// but might be more significant for parallel training. Most importantly,
// it improved stability for large models on many GPUs.
// 如果是GPU模式且CUDA使能,则主机内存会以页锁定内存方式分配(使用cudaMallocHost()函数)
// 对单GPU提升并不明显,对多GPU提升非常明显
inline void CaffeMallocHost(void** ptr, size_t size, bool* use_cuda) {
#ifndef CPU_ONLY
if (Caffe::mode() == Caffe::GPU) {
CUDA_CHECK(cudaMallocHost(ptr, size));
*use_cuda = true;
return;
}
#endif
#ifdef USE_MKL
*ptr = mkl_malloc(size ? size:, );
#else
*ptr = malloc(size);
#endif
*use_cuda = false;
CHECK(*ptr) << "host allocation of size " << size << " failed";
}
// 与CaffeMallocHost对应
inline void CaffeFreeHost(void* ptr, bool use_cuda) {
#ifndef CPU_ONLY
if (use_cuda) {
CUDA_CHECK(cudaFreeHost(ptr));
return;
}
#endif
#ifdef USE_MKL
mkl_free(ptr);
#else
free(ptr);
#endif
} /**
* @brief Manages memory allocation and synchronization between the host (CPU)
* and device (GPU).
*
* TODO(dox): more thorough description.
*/
// 该类负责存储分配以及主机设备间同步
class SyncedMemory {
public:
SyncedMemory();
explicit SyncedMemory(size_t size);
~SyncedMemory();
const void* cpu_data(); //只读
void set_cpu_data(void* data);//设置
const void* gpu_data(); //只读
void set_gpu_data(void* data);//设置
void* mutable_cpu_data(); //读写
void* mutable_gpu_data(); //读写
//状态机变量,4种状态:未初始化 CPU数据有效 GPU数据有效 已同步
enum SyncedHead { UNINITIALIZED, HEAD_AT_CPU, HEAD_AT_GPU, SYNCED };
SyncedHead head() { return head_; }//获取当前状态机变量值
size_t size() { return size_; } //获取当前存储空间尺寸 #ifndef CPU_ONLY
void async_gpu_push(const cudaStream_t& stream);
#endif private:
void check_device(); void to_cpu(); //数据同步到CPU
void to_gpu(); //数据同步到GPU
void* cpu_ptr_; //位于CPU的数据指针
void* gpu_ptr_; //位于GPU的数据指针
size_t size_; //存储空间大小
SyncedHead head_; //状态机变量
bool own_cpu_data_;//标志是否拥有CPU数据权(否,即从别的对象共享)
bool cpu_malloc_use_cuda_;
bool own_gpu_data_;//标志是否拥有GPU数据权
int device_; DISABLE_COPY_AND_ASSIGN(SyncedMemory);
}; // class SyncedMemory } // namespace caffe #endif // CAFFE_SYNCEDMEM_HPP_

src/caffe/blob.cpp

 #include <climits>
#include <vector> #include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp" namespace caffe {
//变维函数,将(num,channels,height,width)转为vector<int>并调用重载函数
template <typename Dtype>
void Blob<Dtype>::Reshape(const int num, const int channels, const int height,
const int width) {
vector<int> shape();
shape[] = num;
shape[] = channels;
shape[] = height;
shape[] = width;
Reshape(shape);
}
//真正的变维函数
template <typename Dtype>
void Blob<Dtype>::Reshape(const vector<int>& shape) {
CHECK_LE(shape.size(), kMaxBlobAxes);//保证vector维度小于kMaxBlobAxes
count_ = ;//用于计算元素总数=num*channels*height*width
shape_.resize(shape.size());//成员变量维度重置
if (!shape_data_ || shape_data_->size() < shape.size() * sizeof(int)) {
shape_data_.reset(new SyncedMemory(shape.size() * sizeof(int)));
}
int* shape_data = static_cast<int*>(shape_data_->mutable_cpu_data());
for (int i = ; i < shape.size(); ++i) {
CHECK_GE(shape[i], );
if (count_ != ) {//保证count不溢出
CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX";
}
count_ *= shape[i];
shape_[i] = shape[i];//成员变量赋值
shape_data[i] = shape[i];
}
if (count_ > capacity_) {//如果新的count_大于当前分配的空间容量
capacity_ = count_; //扩容,重新分配data_和diff_空间
data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
}
} template <typename Dtype>
void Blob<Dtype>::Reshape(const BlobShape& shape) {
CHECK_LE(shape.dim_size(), kMaxBlobAxes);
vector<int> shape_vec(shape.dim_size());
for (int i = ; i < shape.dim_size(); ++i) {
shape_vec[i] = shape.dim(i);
}
Reshape(shape_vec);
} template <typename Dtype>
void Blob<Dtype>::ReshapeLike(const Blob<Dtype>& other) {
Reshape(other.shape());
}
//构造函数
template <typename Dtype>
Blob<Dtype>::Blob(const int num, const int channels, const int height,
const int width)
// capacity_ must be initialized before calling Reshape
: capacity_() {
//调用Reshape之前必须初始化capacity,否则会导致不可预期的后果
Reshape(num, channels, height, width);
} template <typename Dtype>
Blob<Dtype>::Blob(const vector<int>& shape)
// capacity_ must be initialized before calling Reshape
: capacity_() {
Reshape(shape);
} template <typename Dtype>
const int* Blob<Dtype>::gpu_shape() const {
CHECK(shape_data_);
return (const int*)shape_data_->gpu_data();
}
//只读获得cpu data指针
template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_data() const {
CHECK(data_);//保证data_不为空
return (const Dtype*)data_->cpu_data();
}
//修改cpu data指针
template <typename Dtype>
void Blob<Dtype>::set_cpu_data(Dtype* data) {
CHECK(data);
// Make sure CPU and GPU sizes remain equal
size_t size = count_ * sizeof(Dtype);
if (data_->size() != size) {
data_.reset(new SyncedMemory(size));
diff_.reset(new SyncedMemory(size));
}
data_->set_cpu_data(data);//设置成员变量值为传入参数值
}
//只读获得gpu data指针
template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_data() const {
CHECK(data_);//保证不为空
return (const Dtype*)data_->gpu_data();
}
//修改gpu data指针
template <typename Dtype>
void Blob<Dtype>::set_gpu_data(Dtype* data) {
CHECK(data);
// Make sure CPU and GPU sizes remain equal
size_t size = count_ * sizeof(Dtype);
if (data_->size() != size) {
data_.reset(new SyncedMemory(size));
diff_.reset(new SyncedMemory(size));
}
data_->set_gpu_data(data);
}
//只读获得cpu diff指针
template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_diff() const {
CHECK(diff_);
return (const Dtype*)diff_->cpu_data();
}
//只读获得gpu diff指针
template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_diff() const {
CHECK(diff_);
return (const Dtype*)diff_->gpu_data();
}
//读写访问cpu_data
template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_data() {
CHECK(data_);
return static_cast<Dtype*>(data_->mutable_cpu_data());
}
//读写访问gpu_data
template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_data() {
CHECK(data_);
return static_cast<Dtype*>(data_->mutable_gpu_data());
}
//读写访问cpu_diff
template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_diff() {
CHECK(diff_);
return static_cast<Dtype*>(diff_->mutable_cpu_data());
}
//读写访问gpu_diff
template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_diff() {
CHECK(diff_);
return static_cast<Dtype*>(diff_->mutable_gpu_data());
}
//共享另一个Blob的data指针
template <typename Dtype>
void Blob<Dtype>::ShareData(const Blob& other) {
CHECK_EQ(count_, other.count());
data_ = other.data();
}
//共享另一个Blob的diff指针
template <typename Dtype>
void Blob<Dtype>::ShareDiff(const Blob& other) {
CHECK_EQ(count_, other.count());
diff_ = other.diff();
} // The "update" method is used for parameter blobs in a Net, which are stored
// as Blob<float> or Blob<double> -- hence we do not define it for
// Blob<int> or Blob<unsigned int>.
//更新函数用于网络参数Blob的更新。其中int和unsigned int类型的处理并未实现
//实现的类型为Blob<float>和Blob<double>
template <> void Blob<unsigned int>::Update() { NOT_IMPLEMENTED; }
template <> void Blob<int>::Update() { NOT_IMPLEMENTED; } template <typename Dtype>
void Blob<Dtype>::Update() {
// We will perform update based on where the data is located.
//data在哪儿就在哪儿更新
switch (data_->head()) {
case SyncedMemory::HEAD_AT_CPU:
// perform computation on CPU
//执行CPU运算,data[i]=data[i]-diff[i],i=0~count-1
caffe_axpy<Dtype>(count_, Dtype(-),
static_cast<const Dtype*>(diff_->cpu_data()),
static_cast<Dtype*>(data_->mutable_cpu_data()));
break;
case SyncedMemory::HEAD_AT_GPU://data位于GPU或CPU/GPU已同步
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
// perform computation on GPU
//执行GPU运算,data[i]=data[i]-diff[i],i=0~count-1
caffe_gpu_axpy<Dtype>(count_, Dtype(-),
static_cast<const Dtype*>(diff_->gpu_data()),
static_cast<Dtype*>(data_->mutable_gpu_data()));
#else
NO_GPU;//编译时如果打开CPU_ONLY,则GPU禁用
#endif
break;
default:
LOG(FATAL) << "Syncedmem not initialized.";
}
} template <> unsigned int Blob<unsigned int>::asum_data() const {
NOT_IMPLEMENTED;
return ;
} template <> int Blob<int>::asum_data() const {
NOT_IMPLEMENTED;
return ;
}
//计算L1范数,即绝对值和
template <typename Dtype>
Dtype Blob<Dtype>::asum_data() const {
if (!data_) { return ; }
switch (data_->head()) {
case SyncedMemory::HEAD_AT_CPU:
return caffe_cpu_asum(count_, cpu_data());//执行CPU上的asum计算
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
{
Dtype asum;
caffe_gpu_asum(count_, gpu_data(), &asum);//执行GPU上的asum计算
return asum;
}
#else
NO_GPU;
#endif
case SyncedMemory::UNINITIALIZED:
return ;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
}
return ;
} template <> unsigned int Blob<unsigned int>::asum_diff() const {
NOT_IMPLEMENTED;
return ;
} template <> int Blob<int>::asum_diff() const {
NOT_IMPLEMENTED;
return ;
} template <typename Dtype>
Dtype Blob<Dtype>::asum_diff() const {
if (!diff_) { return ; }
switch (diff_->head()) {
case SyncedMemory::HEAD_AT_CPU:
return caffe_cpu_asum(count_, cpu_diff());
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
{
Dtype asum;
caffe_gpu_asum(count_, gpu_diff(), &asum);
return asum;
}
#else
NO_GPU;
#endif
case SyncedMemory::UNINITIALIZED:
return ;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
}
return ;
} template <> unsigned int Blob<unsigned int>::sumsq_data() const {
NOT_IMPLEMENTED;
return ;
} template <> int Blob<int>::sumsq_data() const {
NOT_IMPLEMENTED;
return ;
}
//用于L2范数,平方和
template <typename Dtype>
Dtype Blob<Dtype>::sumsq_data() const {
Dtype sumsq;
const Dtype* data;
if (!data_) { return ; }
switch (data_->head()) {
case SyncedMemory::HEAD_AT_CPU:
data = cpu_data();
sumsq = caffe_cpu_dot(count_, data, data);
break;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
data = gpu_data();
caffe_gpu_dot(count_, data, data, &sumsq);
#else
NO_GPU;
#endif
break;
case SyncedMemory::UNINITIALIZED:
return ;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
}
return sumsq;
} template <> unsigned int Blob<unsigned int>::sumsq_diff() const {
NOT_IMPLEMENTED;
return ;
} template <> int Blob<int>::sumsq_diff() const {
NOT_IMPLEMENTED;
return ;
} template <typename Dtype>
Dtype Blob<Dtype>::sumsq_diff() const {
Dtype sumsq;
const Dtype* diff;
if (!diff_) { return ; }
switch (diff_->head()) {
case SyncedMemory::HEAD_AT_CPU:
diff = cpu_diff();
sumsq = caffe_cpu_dot(count_, diff, diff);
break;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
diff = gpu_diff();
caffe_gpu_dot(count_, diff, diff, &sumsq);
break;
#else
NO_GPU;
#endif
case SyncedMemory::UNINITIALIZED:
return ;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
}
return sumsq;
} template <> void Blob<unsigned int>::scale_data(unsigned int scale_factor) {
NOT_IMPLEMENTED;
} template <> void Blob<int>::scale_data(int scale_factor) {
NOT_IMPLEMENTED;
}
//对data_进行幅度缩放
template <typename Dtype>
void Blob<Dtype>::scale_data(Dtype scale_factor) {
Dtype* data;
if (!data_) { return; }
switch (data_->head()) {
case SyncedMemory::HEAD_AT_CPU:
data = mutable_cpu_data();
caffe_scal(count_, scale_factor, data);
return;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
data = mutable_gpu_data();
caffe_gpu_scal(count_, scale_factor, data);
return;
#else
NO_GPU;
#endif
case SyncedMemory::UNINITIALIZED:
return;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
}
} template <> void Blob<unsigned int>::scale_diff(unsigned int scale_factor) {
NOT_IMPLEMENTED;
} template <> void Blob<int>::scale_diff(int scale_factor) {
NOT_IMPLEMENTED;
} template <typename Dtype>
void Blob<Dtype>::scale_diff(Dtype scale_factor) {
Dtype* diff;
if (!diff_) { return; }
switch (diff_->head()) {
case SyncedMemory::HEAD_AT_CPU:
diff = mutable_cpu_diff();
caffe_scal(count_, scale_factor, diff);
return;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
diff = mutable_gpu_diff();
caffe_gpu_scal(count_, scale_factor, diff);
return;
#else
NO_GPU;
#endif
case SyncedMemory::UNINITIALIZED:
return;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
}
}
//判断形状是否相同
template <typename Dtype>
bool Blob<Dtype>::ShapeEquals(const BlobProto& other) {
if (other.has_num() || other.has_channels() ||
other.has_height() || other.has_width()) {
// Using deprecated 4D Blob dimensions --每个维度对比
// shape is (num, channels, height, width).
// Note: we do not use the normal Blob::num(), Blob::channels(), etc.
// methods as these index from the beginning of the blob shape, where legacy
// parameter blobs were indexed from the end of the blob shape (e.g., bias
// Blob shape (1 x 1 x 1 x N), IP layer weight Blob shape (1 x 1 x M x N)).
return shape_.size() <= &&
LegacyShape(-) == other.num() &&
LegacyShape(-) == other.channels() &&
LegacyShape(-) == other.height() &&
LegacyShape(-) == other.width();
}
//直接对比
vector<int> other_shape(other.shape().dim_size());
for (int i = ; i < other.shape().dim_size(); ++i) {
other_shape[i] = other.shape().dim(i);
}
return shape_ == other_shape;
}
//从另一个Blob拷贝data(可选diff),必要时进行变维
template <typename Dtype>
void Blob<Dtype>::CopyFrom(const Blob& source, bool copy_diff, bool reshape) {
if (source.count() != count_ || source.shape() != shape_) {
if (reshape) {
ReshapeLike(source);
} else {
LOG(FATAL) << "Trying to copy blobs of different sizes.";
}
}
switch (Caffe::mode()) {
case Caffe::GPU:
if (copy_diff) {
caffe_copy(count_, source.gpu_diff(),
static_cast<Dtype*>(diff_->mutable_gpu_data()));
} else {
caffe_copy(count_, source.gpu_data(),
static_cast<Dtype*>(data_->mutable_gpu_data()));
}
break;
case Caffe::CPU:
if (copy_diff) {
caffe_copy(count_, source.cpu_diff(),
static_cast<Dtype*>(diff_->mutable_cpu_data()));
} else {
caffe_copy(count_, source.cpu_data(),
static_cast<Dtype*>(data_->mutable_cpu_data()));
}
break;
default:
LOG(FATAL) << "Unknown caffe mode.";
}
}
//从BlobProto中加载一个Blob
template <typename Dtype>
void Blob<Dtype>::FromProto(const BlobProto& proto, bool reshape) {
if (reshape) {//获取维度信息
vector<int> shape;
if (proto.has_num() || proto.has_channels() ||
proto.has_height() || proto.has_width()) {
// Using deprecated 4D Blob dimensions --
// shape is (num, channels, height, width).
shape.resize();
shape[] = proto.num();
shape[] = proto.channels();
shape[] = proto.height();
shape[] = proto.width();
} else {
shape.resize(proto.shape().dim_size());
for (int i = ; i < proto.shape().dim_size(); ++i) {
shape[i] = proto.shape().dim(i);
}
}
Reshape(shape);//变维
} else {
CHECK(ShapeEquals(proto)) << "shape mismatch (reshape not set)";
}
// copy data 加载数据
Dtype* data_vec = mutable_cpu_data();
if (proto.double_data_size() > ) {//若之前保存的是double类型的data
CHECK_EQ(count_, proto.double_data_size());
for (int i = ; i < count_; ++i) {
data_vec[i] = proto.double_data(i);//加载double data
}
} else {
CHECK_EQ(count_, proto.data_size());
for (int i = ; i < count_; ++i) {
data_vec[i] = proto.data(i);//否则加载float data
}
}
if (proto.double_diff_size() > ) {//若之前保存的是double类型的diff
CHECK_EQ(count_, proto.double_diff_size());
Dtype* diff_vec = mutable_cpu_diff();
for (int i = ; i < count_; ++i) {
diff_vec[i] = proto.double_diff(i);//加载double diff
}
} else if (proto.diff_size() > ) {
CHECK_EQ(count_, proto.diff_size());
Dtype* diff_vec = mutable_cpu_diff();
for (int i = ; i < count_; ++i) {
diff_vec[i] = proto.diff(i);//否则加载float diff
}
}
} template <>
void Blob<double>::ToProto(BlobProto* proto, bool write_diff) const {
proto->clear_shape();
for (int i = ; i < shape_.size(); ++i) {
proto->mutable_shape()->add_dim(shape_[i]);
}
proto->clear_double_data();
proto->clear_double_diff();
const double* data_vec = cpu_data();
for (int i = ; i < count_; ++i) {
proto->add_double_data(data_vec[i]);
}
if (write_diff) {
const double* diff_vec = cpu_diff();
for (int i = ; i < count_; ++i) {
proto->add_double_diff(diff_vec[i]);
}
}
}
//将Blob中的data(可选diff)导出到BlobProto结构体,便于存储到磁盘文件中
template <>
void Blob<float>::ToProto(BlobProto* proto, bool write_diff) const {
proto->clear_shape();//重置proto维度,保证与Blob相同
for (int i = ; i < shape_.size(); ++i) {
proto->mutable_shape()->add_dim(shape_[i]);
}
proto->clear_data();//清楚data
proto->clear_diff();//清楚diff
const float* data_vec = cpu_data();//将data导出到proto
for (int i = ; i < count_; ++i) {
proto->add_data(data_vec[i]);
}
if (write_diff) {//如果要求导出diff
const float* diff_vec = cpu_diff();//导出diff到proto
for (int i = ; i < count_; ++i) {
proto->add_diff(diff_vec[i]);
}
}
} INSTANTIATE_CLASS(Blob);//实例化Blob类模板(float,double )
template class Blob<int>;
template class Blob<unsigned int>; } // namespace caffe

初学者,慢慢看,待更新……

摘抄参考赵永科《深度学习 21天实战caffe》

最新文章

  1. IE8以下不支持getElementsByClassName方法
  2. NYOJ 52-无聊的小明
  3. 更新Code First生成的数据库
  4. Git超级菜鸟学习--&gt; 社区化协作以及分支操作
  5. SSH方式登录github出现Permission denied (publickey)
  6. CakePHP 2.x 升级3.0
  7. 修改select选中项
  8. Java集合框架,未完
  9. Linux系列
  10. Hystrix降级逻辑中如何获取触发的异常
  11. [nodejs]er_bad_field_error NaN in where clause
  12. keras 的svm做分类
  13. mysql学习笔记--数据完整性
  14. Foreach循环输出索引值
  15. CCNA实验3.单臂路由器
  16. EL语言表达式 (二)【EL对数据的访问】
  17. 拓扑试验划分简单的静态VLAN
  18. sqlserver 死锁相关
  19. 系统session超时时间的设置
  20. Day04 dom详解及js事件

热门文章

  1. 用JS实现一个斗地主发牌器
  2. 5.href和src区别? title和alt【CSS】
  3. 在notepad++中编辑时光标消失不见
  4. Node.js学习(第二章:node核心模块--fs)
  5. js javascirpt 数学库、 算法库 (转载)
  6. zabbix监控内存
  7. 利用Python openpyxl操作Excel
  8. linux的virtualenv和virtualenvwarpper
  9. python中while循环的基本使用
  10. Spring -10 -&lt;bean&gt;的 scope 属性 -singleton 默认值/prototype 多例 /request /session /application /global session