一、全局解释器锁GIL:

  

  官方的解释:掌握概念为主

"""
In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple
native threads from executing Python bytecodes at once. This lock is necessary mainly
because CPython’s memory management is not thread-safe.
"""

 (1):python代码的执行由python虚拟机(解释器)来控制,加锁是为了保证同一时刻只有一个线程再运行

用来阻止同一个进程下的多个线程的同时执行(一个进程内多个进程无法实现并行,但可以实现并发)

 (2):python解释器有很多种,最常见的就是cpython解释器,内部是由c语言编写的;

GIL本质也是一把互斥锁:将并发变成串行,虽然牺牲了执行效率,但保证了数据的安全性;

GIL的存在是因为Cpython解释器的内存管理不是线程安全的

垃圾回收机制:

  1:引用计数(没有被定义使用的)

  2:标记清除()

  3:分带回收(青春带,老年代)

python的多线程没法利用多核优势  是不是就是没有用了?
  看情况讨论,而且肯定是有用的
(3):研究python的多线程是否有用需要分情况讨论(分计算密集型和IO密集型)
四个任务 计算密集型的  10s
单核情况下
开线程更省资源
多核情况下
开进程 10s
开线程 40s 四个任务 IO密集型的
单核情况下
开线程更节省资源
多核情况下
开线程更节省资源 计算密集型:
1、特点:要进行大量的计算,消耗CPU资源。比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力
# 计算密集型
from multiprocessing import Process
from threading import Thread
import os,time def work ():
res = 0
for i in range(10000000):
res *= 1
if __name__ == '__main__':
l=[]
print(os.cpu_count()) # 本机电脑的核数
start = time.time()
for i in range(6):
# p= Thread(target=work) # 开线程 run time is 0.10372185707092285
p=Process(target=work) # 开进程 run time is 0.8038477897644043
l.append(p)
p.start()
for p in l:
p.join()
stop = time.time()
print('run time is %s'%(stop-start))

  IO密集型:

  特点:CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)

# IO密集型

from  multiprocessing import Process
from threading import Thread
import threading
import os
import time def work():
time.sleep(2) if __name__ == '__main__':
l=[]
print(os.cpu_count())
start = time.time()
for i in range(40):
# p = Process(target=work) # 进程耗时 run time is 2.7755727767944336
p=Thread(target=work ) #线程耗时 2.005638360977173
l.append(p)
p.start()
for p in l :
p.join()
stop = time.time() print(' run time is %s'%(stop-start))

ps:数据密集(Data-Intensive)

二、GIL与普通的互斥锁:

from threading import Thread
import time n=100
def task():
global n
tmp = n
time.sleep(2) # IO阻塞等待的 相当于一把锁
n= tmp -1
t_list = []
for i in range(100):
t = Thread(target=task)
t.start()
t_list.append(t)
for t in t_list:
t.join() print(n) >> 99/0 """time.sleep(2) # IO操作阻塞等待的 相当于一把锁,
100个中随机第一个抢到锁后,后面的就就进不去了,把这个条件取消掉就能全部依次取完,结果为0 """

三、死锁与递归锁

  所谓的死锁:就是指两个或两个以上的进程或线程在执行的时候,因为争夺资源而造成一种互相等待的现象,再也无法执行下去

  解决死锁的办法就是利用递归锁(RLock),把Lock 变成RLock

递归锁:就是可以支持在同一线程中多次请求同一资源,简单的来说就是两者共用同一把锁,

当你加锁后释放锁时,另一个同时也可以访问资源并循环的进行加锁(acquire)和 (释放锁)release,直到结束访问为止

from  threading import Thread,Lock,RLock,current_thread
import time from threading import Thread,Lock,current_thread,RLock
import time
"""
Rlock可以被第一个抢到锁的人连续的acquire和release
每acquire一次锁身上的计数加1
每release一次锁身上的计数减1
只要锁的计数不为0 其他人都不能抢
"""
# mutexA = Lock()
# mutexB = Lock()
mutexA = mutexB = RLock() # A B现在是同一把锁 class MyThread(Thread):
def run(self): # 创建线程自动触发run方法 run方法内调用func1 func2相当于也是自动触发
self.func1()
self.func2() def func1(self):
mutexA.acquire()
print('%s抢到了A锁'%self.name) # self.name等价于current_thread().name
mutexB.acquire()
print('%s抢到了B锁'%self.name)
mutexB.release()
print('%s释放了B锁'%self.name)
mutexA.release()
print('%s释放了A锁'%self.name) def func2(self):
mutexB.acquire()
print('%s抢到了B锁'%self.name)
time.sleep(1)
mutexA.acquire()
print('%s抢到了A锁' % self.name)
mutexA.release()
print('%s释放了A锁' % self.name)
mutexB.release()
print('%s释放了B锁' % self.name) for i in range(10):
t = MyThread()
t.start()

关于加锁问题:自己千万不能轻易的处理锁的问题,容易造成死锁现象

四、信号量

  信号量 某一段代码,同一时间,只能被N个进程使用

"""
互斥锁:一个厕所(一个坑位)
信号量:公共厕所(多个坑位)
"""
from threading import Semaphore,Thread
import time
import random sm = Semaphore(5) # 造了一个含有五个的坑位的公共厕所 def task(name):
sm.acquire()
print('%s占了一个坑位'%name)
time.sleep(random.randint(1,3)) #随机阻塞
sm.release() for i in range(40):
t = Thread(target=task,args=(i,))
t.start()
四十个循环随机产生枪锁和释放锁

五、event事件:

  一般用在一个子线程等待另一个子线程的时候,与进程的.join反法,主进程等子进程运行完毕后才执行

from threading import Thread,Event #  事件模块 

Event几种方法:

event.isSet():返回event的状态值;

event.wait():如果 event.isSet()==False将阻塞线程;

event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;

event.clear():恢复event的状态值为False。

等红绿灯事件:

from threading import Event,Thread
import time # 先生成一个event对象
e = Event() def light():
print('红灯正亮着')
time.sleep(3)
e.set() # 发信号
print('绿灯亮了') def car(name):
print('%s正在等红灯'%name)
e.wait() # 等待信号
print('%s加油门飙车了'%name) t = Thread(target=light)
t.start() for i in range(10):
t = Thread(target=car,args=('伞兵%s'%i,))
t.start() >>>>:
伞兵8正在等红灯
伞兵9正在等红灯
绿灯亮了伞兵0加油门飙车了
伞兵3加油门飙车了
伞兵4加油门飙车了
伞兵8加油门飙车了
伞兵1加油门飙车了
伞兵5加油门飙车了
伞兵9加油门飙车了
伞兵6加油门飙车了伞兵7加油门飙车了

伞兵2加油门飙车了
 

六、线程Queue(对列)

  queue队列 :使用import queue,用法与进程Queue一样

class queue.Queue(maxsize=0) #  先进先出

class queue.LifoQueue(maxsize=0) #last in fisrt out  后进先出

class queue.PriorityQueue(maxsize=0) # 存储数据时可设置优先级的队列  优先级对列

结果(数字越小优先级越高,优先级高的优先出队):

import queue

q=queue.PriorityQueue()
#put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高
q.put((20,'a'))
q.put((10,'b'))
q.put((30,'c')) print(q.get())
print(q.get())
print(q.get())
'''
结果(数字越小优先级越高,优先级高的优先出队):
(10, 'b')
(20, 'a')
(30, 'c')
'''

同一个进程下的多个线程本来就是数据共享 为什么还需要队列呢?

  因为队列是管道+锁的形式,使用队列就不需要自己手动操作锁的问题了,

锁操作极易造成死锁的现象。




  

最新文章

  1. Dropzone.js实现文件拖拽上传
  2. MVC中使用Entity Framework 基于方法的查询学习笔记 (二)
  3. 如何用PowerShell列出你机器上的.NET Framework的版本号和SP服务补丁
  4. js中substr,substring,indexOf,lastIndexOf,split 的用法
  5. iOS"Request failed: unacceptable content-type: text/html"
  6. [SQL]LTRIM 、 RTRIM、SUBSTRING 如何使用
  7. 1017. Queueing at Bank (25)
  8. 自定义的插件如何加载到Qt Designer中(详细)
  9. zeromq源码分析笔记之线程间收发命令(2)
  10. 在spring MVC的controller中获取ServletConfig
  11. jquery 实现table的动态合并列
  12. css3 flex 布局
  13. Activity的状态保存
  14. Mysql 查看定时器 打开定时器 设置定时器时间
  15. mysql 复制原理与实践
  16. 大纲2.3 Internet
  17. IDA的头像
  18. 峰Spring4学习(7)spring对JDBC的支持
  19. yyblog2.0 数据库开发规范
  20. 【BZOJ2038】小Z的袜子【莫队】

热门文章

  1. Community Cloud零基础学习(三)Partner Account
  2. ABP .NET CORE 连接mysql
  3. OI常用模板
  4. Oracle 查询重复数据方法
  5. 常用模块-正则re
  6. SUCTF 2019-EasySQL
  7. Gym - 101142C CodeCoder vs TopForces(搜索)
  8. NtQueryObject 获得内核对象使用计数
  9. 萤火虫系统(firefly) RK3399 python3 安装 tensorflow
  10. Eclipse中常用的快捷键总结!不收藏后悔!