前言

在STL中,容器的定义中都带一个模板参数,如vector

template <class T, class Alloc = alloc>
class vector {...}

其中第二个参数就是该容器使用的空间配置器,其中缺省使用STL已经实现的空间配置器(alloc),

该配置器使用malloc/free等为vector分配内存。

缺省的空间配置器

alloc定义了两级的空间配置器,第一级是对malloc/free简单的封装。

而为了解决内存碎片的问题,跟进行内存管理,alloc实现的第二级的空间配置器。

第二级空间配置器在分配大块内存(大于128bytes)时,会直接调用第一级空间配置器,

而分配小于128bytes的内存时,则使用内存池跟free_list进行内存分配/管理。

第一级空间配置器

基本实现如下(跟SGI STL可能有点出入,主要是提取核心的内容)

 class base_alloc {
public:
// 只是对malloc/free的简单封装
static void* allocate(size_t n)
{
void* res = malloc(n);
if ( == res) res = oom_malloc(n);
return res;
}
static void* reallocate(void* p, size_t new_sz)
{
void* res = realloc(p, new_sz);
if ( == res) res = oom_realloc(p, new_sz);
return res;
}
static void deallocate(void* p)
{
free(p);
}
// 用来设置内存不足时的处理函数 该函数参数跟返回值都是一个函数指针
// 一般会抛出异常/尝试回收内存
static void(*set_handler(void(*f)()))()
{
void(*old)() = _oom_handler;
_oom_handler = f;
return old;
}
private:
// 用来处理内存不足的情况
static void* oom_malloc(size_t n)
{
void(*my_handler)();
void* res; for (;;)
{
my_handler = _oom_handler;
if ( == my_handler) { return NULL; }
(*my_handler)();
if (res = malloc(n)) return res;
}
}
// 用来处理内存不足的情况
static void* oom_realloc(void* p, size_t n)
{
void(*my_handler)();
void* res; for (;;)
{
my_handler = _oom_handler;
if ( == my_handler) { return NULL; }
(*my_handler)();
if (res = reallocate(p, n)) return res;
}
}
// 由用户设置,在内存不足的时候进行处理,由上面两个函数调用
static void(*_oom_handler)();
}; // 处理函数默认为0
void(*base_alloc::_oom_handler)() = ;

它可以设定一个处理内存不足的时候的处理函数(跟set_new_handler类似)。

第二级空间配置器

该配置器维护一个free_list,这是一个指针数组。

在分配内存的时候,补足8bytes的倍数,free_list数组中每个指针分别管理分配大小为8、16、24、32...bytes的内存。

下图表示从二级空间配置器中分配内存时是如何维护free_list的(建议参考下面源码阅读)。

开始所有指针都为0,没有可分配的区块时(就是free_list[i]==0)会从内存池中分配内存(默认分配20个区块)插入到free_list[i]中。

然后改变free_list[i]的指向,指向下一个区块(free_list_link指向下一个区块,如果没有则为0)。

下图表示二级空间配置器回收内存时是如何维护free_list结构的。

回收的时候只是将区块插入到free_list[i]的开头,这块内存用于下次分配的时候使用。

该配置器实现如下(同样提取核心的部分):

 enum { _ALIGN =  };    // 对齐
enum { _MAX_BYTES = }; // 区块大小上限
enum { _NFREELISTS = _MAX_BYTES / _ALIGN }; // free-list个数 class default_alloc {
private:
// 将bytes上调到8的倍数
static size_t ROUND_UP(size_t bytes)
{
return (bytes + _ALIGN - ) & ~(_ALIGN - );
}
private:
union obj {
union obj* free_list_link;
char client_data[];
};
private:
// 16个free-lists 各自管理分别为8,16,24...的小额区块
static obj* free_list[_NFREELISTS];
// 根据区块大小,决定使用第n号free-list
static size_t FREELIST_INDEX(size_t bytes)
{
return (bytes + _ALIGN - ) / _ALIGN - ;
}
// 分配内存,返回一个大小为n的区块,可能将大小为n的其他区块加入到free_list
static void* refill(size_t n)
{
// 默认分配20个区块
int nobjs = ;
char* chunk = chunk_alloc(n, nobjs);
obj** my_free_list;
obj* result, *current_obj, *next_obj; // 如果只分配了一个区块,直接返回
if ( == nobjs) return chunk;
// 否则将其他区块插入到free list
my_free_list = free_list + FREELIST_INDEX(n);
result = (obj*)chunk;
// 第一个区块返回 后面的区块插入到free list
*my_free_list = next_obj = (obj*)(chunk + n);
for (int i = ;; ++i)
{
current_obj = next_obj;
next_obj = (obj*)((char*)next_obj + n);
// 最后一个next的free_list_link为0
if (nobjs - == i)
{
current_obj->free_list_link = ;
break;
}
current_obj->free_list_link = next_obj;
}
return result;
}
// 分配内存
// 在内存池容量足够时,只调整start_free跟end_free指针
// 在内存池容量不足时,调用malloc分配内存(2 * size * nobjs + ROUND_UP(heap_size >> 4),每次调整heap_size += 本次分配内存的大小)
static char* chunk_alloc(size_t size, int& nobjs); static char* start_free; //内存池的起始位置
static char* end_free; //内存池的结束位置
static size_t heap_size; //分配内存时的附加量
public:
static void* allocate(size_t n)
{
obj** my_free_list;
obj* result;
// 大于128就调用第一级空间配置器
if (n > (size_t)_MAX_BYTES)
return base_alloc::allocate(n); // 寻找适当的free-list
my_free_list = free_list + FREELIST_INDEX(n);
result = *my_free_list;
// 没有可用的free list
if (result == )
return refill(ROUND_UP(n)); // 调整free list 移除free list
*my_free_list = result->free_list_link;
return result;
}
static void deallocate(void* p, size_t n)
{
obj* q = (obj*)p;
obj** my_free_list; // 大于128就调用第一级空间配置器
if (n > (size_t)_MAX_BYTES)
{
base_alloc::deallocate(p);
return;
} // 寻找对应的free list
my_free_list = free_list + FREELIST_INDEX(n);
// 调整free list 回收区块(将区块插入到my_free_list)
q->free_list_link = *my_free_list;
*my_free_list = q;
}
static void reallocate(void* p, size_t old_sz, size_t new_sz);
}; char* default_alloc::start_free = ;
char* default_alloc::end_free = ;
size_t default_alloc::heap_size = ;
default_alloc::obj* default_alloc::free_list[_NFREELISTS] = { , , , , , , , , , , , , , , , };

最新文章

  1. EF for MySql 开发配置手册
  2. iOS开发网络篇—NSURLConnection基本使用(一)
  3. 罗辑思维CEO李天田:我们是这样玩儿公司的
  4. 使用Spring的Property文件存储测试数据 - 添加测试数据
  5. [工作积累] Google Play Game SDK details
  6. Struts2笔记——通配符和动态方法调用
  7. UVaLive 6623 Battle for Silver (最大值,暴力)
  8. Information seeking letter, hard copy version
  9. sf中schedule设定
  10. Luogu 1006 传纸条 / NOIP 2008 传纸条(动态规划)
  11. memcached笔记
  12. CentOS 6.9 升级OpenSSH版本 关闭ssh服务后门
  13. 机器学习第一篇——最近邻kNN
  14. oc语言的Foundation框架(学习笔记1)
  15. Spring中Bean及@Bean的理解
  16. Django的Modelforms的介绍
  17. ViewBag和ViewDate以及TempDate的区别
  18. abap关键字
  19. 多重继承 -Javascript中的apply与call详解
  20. [Postgres]合并多行到一列(转)

热门文章

  1. 实例解析嵌套的JSON格式数据
  2. IE webkit 滚动条样式!
  3. npm命令要记
  4. 51nod 1265 四点共面【计算几何+线性代数】
  5. ZOJ 3380 Patchouli&#39;s Spell Cards
  6. java读写文件及保留指定位小数
  7. 修复XAMPP安装过程中 因端口80被占用 Apache无法启动的问题
  8. Scala实战高手****第14课:Scala集合上的函数式编程实战及Spark源码鉴赏
  9. 显示/隐藏Mac系统中所有的隐藏文件
  10. Looking deeper into SQL Server using Minidumps