题目链接

这道题讲道理还是不错的,因为你需要不断挖掘其中的性质来帮助解题。可惜数据范围开在这里让考试时的我很慌,勉强也就写了$65$分就没了。回忆在考场上,思路是没有错的,就是发掘不够深入,思路还不够清晰。事实上考场上没有选择继续做这道题是对的,因为就算是我考后仔细分析之后,写完这道题仍然花了我不少时间。

我们可以循着思路一步步分析,一步步得到每一个性质。

题目中对其走过路径的字典序的比较提示我们按斜行分析。稍加思考我们就能得到一个明显的结论,就是对于某一个格子如果它是$1$,那它的右上角的那个格子就不能是$0$,这几乎就是题目条件的定义,因为有一条路径走到了这个格子,它就会在分叉的时候出问题。我们它这个性质总结一下就能得到我们需要的第一个结论:

1.对于每一个斜行,其$0/1$状态一定是存在一个分界点,使得其左下方都是$1$,其右上方都是$0$。

有以上的结论将大大减少每一个斜行的可行的$0/1$状态。我们接着思考,一对不合法的路径的出现,除了上述的情况,都可以归结为两条不同的路径以相同的$0/1$串走到了某一个格子,但是这个格子右边下边的两个格子的$0/1$是不同的,这同样会让矛盾出现。或许你会想这两条路径在$0/1$字典序出现分歧的时候并不一定在同一个格子里,但如果存在这种情况,那我们一定能找到前者所说的更加简单的情况。我们将形式地描述这个问题,我们称一个格子是“模糊”的,当且仅当存在两条不同的路径以相同的$0/1$串走到了这个格子。我们所发现的可以表述成:

2.如果某一个格子它左边上边的两个格子的$0/1$是相同的,或者它左边或上边有格子是模糊点,那这个格子就是模糊点;模糊点右边下边的两个格子的$0/1$必须相同。

这也是一个重要的结论,它为下一个结论的得到提供了一个有力的帮助。模糊点的传递性隐约让我们感觉到它们的排布不会错杂无序,事实上十分有规律。读者可以仔细推敲,利用归纳法简单证明以下结论:

3.去除第一行和第一列的格子后,每一条斜行最多只有一个格子是非模糊的,并且这个非模糊点一定在第二行或第二列。

这个性质令人惊讶,但它是真实的,并且不难证明。有了这个结论后,我们就可以有一个大致的想法,我们可以枚举整张图的模糊状态,状态数是$O(m)$的,因为斜行上一旦全是模糊点,接下来也一定都是模糊点。我们考虑对于一个给定的模糊状态,我们怎么去计算有多少$0/1$的填放方式满足整张图的模糊状态。假设我们枚举那个仅存的非模糊点最后出现在哪一个斜行,手模一下可以发现,为了保证这个非模糊点没有消失,前面的大多数斜行的$0/1$状态是唯一的,只有最开头的两斜行会有多种状态,并且为了让这个非模糊点在下一斜行中消失,这行和下一行的可行状态数也可以知道,那么算到这里方案数还是一个已知的常数。在非模糊点消失后,接下来每一斜行面临的决策都是一样的,对于后面的方案数只要快速幂即可。到这里为止,已经可以解决这道题了,利用此算法的复杂度是$O(mlogm)$。

讲到这里算法大致结束了。对于上述算法而言,我们枚举了非模糊点最后出现的位置然后算方案数,其算式的形式是相同的,我们可以把其中的式子化简一下,就能用等比数列求和直接算了,在此处当$n=m$的时候要求有$3$的逆元。所以,总复杂度为$O(logm)$。这道题的细节相当复杂,其中的有许多常数要手动算出来,也有一些角落需要特判,就算大致知道怎么做了之后实现起来也是不容易的。

这份代码是$O(mlogm)$的实现,写的时候也是有点逻辑顺序在里面的,总的来说是按照斜行的从上到下。可能其中有需要解释的地方,$C$函数用于求在$x + 1$斜行后全部都是模糊点的方案数的计算,one more case中是一个算非模糊点在第二列最后两个位置时特判,dd line是非模糊点在第$n$斜行的特判,last case是非模糊点在第二行最后两个位置时的特判。

#include <cstdio>
#include <algorithm> typedef long long LL; const int MOD = (int)1e9 + ; int n, m, ans, p2, p3; int Pow(int x, int b) {
int r = ;
for (; b; b >>= , x = (LL)x * x % MOD) if (b & ) r = (LL)r * x % MOD;
return r;
}
int C(int x) { // end by x, calc after
if (x >= m) return Pow(, n + m - x - );
if (x >= n) return (LL)Pow(, m - x) * p2 % MOD;
return (LL)Pow(, n - x) * p3 % MOD * p2 % MOD;
} int main() {
scanf("%d%d", &n, &m);
if (n > m) std::swap(n, m);
p2 = Pow(, n - );
p3 = Pow(, m - n);
if (n == ) {
printf("%d\n", Pow(, m));
return ;
}
if (n == ) {
printf("%lld\n", 4LL * Pow(, m - ) % MOD);
return ;
}
ans = (ans + 16LL * C()) % MOD; // on line 2
ans = (ans + ( + (n != ) + (m > )) * 4LL * C()) % MOD; // on line 3
for (int i = ; i < n; ++i) {
ans = (ans + 80LL * C(i + )) % MOD;
}
// one more case
if (n > ) {
if (n < m) ans = (ans + 32LL * C(n + )) % MOD;
else ans = (ans + 24LL * C(n + )) % MOD;
}
if (n < m) ans = (ans + 8LL * C(n + )) % MOD;
else ans = (ans + 6LL * C(n + )) % MOD; // dd line
if (n < m && n != ) ans = (ans + 32LL * C(n + )) % MOD;
for (int i = n + ; i < m; ++i) {
ans = (ans + 24LL * C(i + )) % MOD;
}
// last case
if (n > || m > ) {
if (n < m) ans = (ans + 18LL * C(m + )) % MOD;
else ans = (ans + 24LL * C(m + )) % MOD;
}
ans = (ans + 6LL * C(m + )) % MOD; printf("%d\n", ans);
return ;
}

这份代码是$O(logm)$的实现,其中把一些项合并过了,故而稍变简洁,但是无法从中得到具体的含义的。

#include <cstdio>
#include <algorithm>
using namespace std; typedef long long LL; const int MOD = (int)1e9 + ; int n, m, ans, p2, p3; int Pow(int x, int y) {
int r = , b = (y + MOD - ) % (MOD - );
for (; b; b >>= , x = (LL)x * x % MOD) if (b & ) r = (LL)r * x % MOD;
return r;
} int main() {
scanf("%d%d", &n, &m);
if (n > m) swap(n, m);
p2 = Pow(, n - );
p3 = Pow(, m - n);
if (n == ) ans = Pow(, m);
if (n == ) ans = 4LL * Pow(, m - ) % MOD;
if (n == ) ans = 112LL * p3 % MOD;
if (n > ) {
ans = (3LL * p2 + 21LL * Pow(, * n - ) % MOD * p3) % MOD;
if (n == m) ans = (ans + 27LL * p2) % MOD;
else ans = (ans + (24LL * p3 % MOD + ) * p2) % MOD;
ans = (ans + 80LL * p2 % MOD * Pow(, m - n - ) % MOD * (Pow(, n - ) - )) % MOD;
ans = (ans + 12LL * p2 % MOD * (Pow(, max(, m - n - )) - )) % MOD;
}
printf("%d\n", ans);
return ;
}

$\bigodot$总结:

对于这道题的我的做法,或许与大多数做法不一定相同,它并没有要求什么算法,甚至没有类可归,重要的是要细心耐心地思考与推导。

最新文章

  1. Angular2入门系列教程7-HTTP(一)-使用Angular2自带的http进行网络请求
  2. 趣说游戏AI开发:曼哈顿街角的A*算法
  3. python写2048小游戏
  4. 浪潮 NF5240M3 ,NP5540M3 服务器安装2008 R2
  5. CSS弹性盒模型flex在布局中的应用
  6. python 操作excel 使用笔记
  7. 网站如何提高PR值
  8. HTML5每日一练之input新增加的六种时间类型应用
  9. flash 入门课知识小结
  10. 使用VisualStudio进行单元测试之一
  11. MySQL 遇到的问题:在服务里找不到自己的 MySQL,以及在命令行窗口中运行服务出现的问题。
  12. 【剑指offer】面试题29:数组中出现次数超过一半的数字
  13. selenium + python自动化测试环境搭建--亲测
  14. Django项目创建02
  15. js分析 猫_眼_电_影 字体文件 @font-face
  16. java中移位运算
  17. BZOJ.1568.[JSOI2008]Blue Mary开公司(李超线段树)
  18. VS2010带不出System.Data.OracleClient这个引用的解决方案
  19. js检测来源网址,如果是搜索引擎跳转到新地址
  20. 量身打造自己的MyEclipse(多图)

热门文章

  1. Mike的农场 BZOJ4177
  2. VB 批量重命名文件
  3. VB6 CHECK is run as admin privilege
  4. Express app.listen 函数了解
  5. SQL面试整理(1)——数据库连接池
  6. Airmon-ng抓包&amp;破解wifi
  7. Kaggle入门(一)——Digit Recognizer
  8. MySQL——约束(constraint)详解
  9. centos crontab 计划任务 设置与查看
  10. 20135327郭皓--Linux内核分析第四周 扒开系统调用的三层皮(上)