上一篇文章指出,ThreadPoolExecutor执行的步骤如下:

  1. 向线程池中添加任务,当任务数量少于corePoolSize时,会自动创建thead来处理这些任务;

  2. 当添加任务数大于corePoolSize且少于maximmPoolSize时,不再创建线程,而是将这些任务放到阻塞队列中,等待被执行;

  3. 接上面2的条件,且当阻塞队列满了之后,继续创建thread,从而加速处理阻塞队列;

  4. 当添加任务大于maximmPoolSize时,根据饱和策略决定是否容许继续向线程池中添加任务,默认的饱和策略是AbortPolicy(直接丢弃)。

我们直接可以通过ThreadPoolExecutor的execute方法源码来跟踪这个流程。首先,由于在execute方法中常常会根据线程池的状态选择判断一些逻辑,因此在介绍该方法之前首先说一下线程池的几种方法。

1. 线程池的状态:

  1. RUNNING:该状态的线程池会接收新任务,也会处理在阻塞队列中等待处理的任务;

  2. SHUTDOWN:该状态的线程池不会再接收新任务,但还会处理已经提交到阻塞队列中等待处理的任务;

  3. STOP:该状态的线程池不会再接收新任务,不会处理在阻塞队列中等待的任务,而且还会中断正在运行的任务;

  4. TIDYING:所有任务都被终止了,workerCount为0,为此状态时还将调用terminated()方法;

  5. TERMINATED:terminated()方法调用完成后变成此状态。

几个状态相关的方法:

runStateOf(int c) 方法:c & 高3位为1,低29位为0的~CAPACITY,用于获取高3位保存的线程池状态

workerCountOf(int c) 方法:c & 高3位为0,低29位为1的CAPACITY,用于获取低29位的线程数量

ctlOf(int rs, int wc) 方法:参数rs表示runState,参数wc表示workerCount,即根据runState和workerCount打包合并成ctl

也就是说32位含义:(高三位表示状态)+ (低29位表示线程数量)。

接下来分析源码:

2. execute代码

public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. 如果运行的线程少于corePoolSize,
* 尝试开启一个新线程去运行command,command作为这个线程的第一个任务,并运行
*
* 2. 如果任务成功放入队列,我们仍需要一个双重校验去确认是否应该新建一个线程
*(因为可能存在有些线程在我们上次检查后死了),或者进入这个方法后,pool被关闭了
* 所以我们需要再次检查state,如果线程池停止了需要回滚入队列,
* 如果池中没有线程了,新开启 一个线程
*
* 3. 如果无法将任务入队列(可能队列满了),需要新开区一个线程
* 如果失败了,说明线程池shutdown或者饱和了,所以我们拒绝任务
*/ // 1.当运行的线程少于corePoolSize,
// 则直接执行command任务,addworker(command,true)会产生一个新线程来执行这个任务
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
} // 2. 线程池处于RUNNING状态,并将任务放入workQueue队列,但不执行addWorker(表明不创建新的线程)
// 双重校验可防止添加任务到workQueue队列后,线程池状态由于意外等原因处于非RUNNING状态,
// 此时就需要从workQueue队列remove掉这个任务
// 注:offer方法不会阻塞,如果不能插入队列直接返回false。(有可能造成数据丢失?这里不会,也就是说阻塞队列满了)
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
} // 3. 如果线程池不是running状态或者无法入队列,执行线程池的饱和策略
else if (!addWorker(command, false))
reject(command);
}

从上面代码可知,java线程池在任务比较少时(当运行的线程少于corePoolSize),直接通过addWorker来执行任务,当任务比较多时,使用了阻塞队列,阻塞队列里存放的是Worker对象,Worker类是ThreadPoolExecutor的一个内部类,它实现了Runable接口,具有线程的功能。同时还继承了AbstractQueuedSynchronizer(AQS),因此也具有锁的功能。那么ThreadPoolExecutor中如何去执行阻塞队列里面的Worker任务的呢?首先我们来分析一下doWorker,看它是如何执行任务,以及如何触发执行阻塞队列里面的任务的。

3. doWorker代码

doWorker的的作用首先是创建线程,然后执行任务,源码如下:

private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
// 获取线程池运行状态,
// 线程池的运行状态:runnbale=-1,shutdown=0,stop=1,tidying=2,terminated=3
int rs = runStateOf(c); // Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false; // CAS算法
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// 如果添加任务成功,则跳出retry,也就是跳出整个循环体
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
} boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
// 通过线程池的ThreadFactory创建一个线程,用于执行这个firstTask任务
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get()); // 说明:(rs == SHUTDOWN && firstTask == null)可能是workQueue中仍有未执行完成的任务,
// 创建没有初始任务的worker线程执行
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
// 提前检查t线程是否启动,如果是就抛非法线程状态异常
if (t.isAlive())
throw new IllegalThreadStateException();
// workQueue队列中添加Worker对象
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
// 往HashSet中添加worker成功,启动线程
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}

代码看起来有点长,但只做了两件事:

1)用循环CAS操作来将线程数加1;

2)新建一个线程并启执行这个任务。

代码中使用的retry,它类似与goto, 用于控制跳出循环体,retry可以随意命名,只要遵循java的命名规则即可。

CAS会使用循环机制,当存在多线程的情况下,通过比较与交换,其它线程通过循环可以的更新最新值。关于CAS可以参考《深入浅出CAS》

在上面源码中可以看到,addWorker会用当前firstTask创建一个Worker对象,相当于对firstTask的包装,然后用Worker对象作为firstTask创建一个Thread,该Thread保存在Worker的thread成员变量中。在addWorker中通过t.start()启动了这个线程,线程中执行runWorker方法。

4. 内部类Worker

那么ThreadPoolExecutor中如何去执行阻塞队列里面的Worker任务的呢?看到这里好像还是没有答案。那接着分析Worker这个内部类:

private final class Worker extends AbstractQueuedSynchronizer implements Runnable{
private static final long serialVersionUID = 6138294804551838833L; /** Thread this worker is running in. Null if factory fails. */
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks; /**
* Creates with given first task and thread from ThreadFactory.
*/
Worker(Runnable firstTask) {
// 设置AQS的同步状态,大于0代表锁已经被获取
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
} /** Delegates main run loop to outer runWorker */
public void run() {
// 调用ThreadPoolExecutor的runworker方法
runWorker(this);
} // Lock methods
//
// The value 0 represents the unlocked state.
// The value 1 represents the locked state. protected boolean isHeldExclusively() {
return getState() != 0;
} protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
} protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
} public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); } void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}

在addWorker中通过t.start()启动了这个线程,线程中执行runWorker方法。

5. runWorker代码

到目前为止还是没有涉及到阻塞队列!可是到runWorker中就可以看到啦!

final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}

上面代码关键点是while循环getTask()方法,通过循环不断的调用getTask()从阻塞队列中获取任务,通过这个方法,它与阻塞队列建立桥梁。目前我们已经知道当添加任务数量大于coolPoolSize(且小于maximumPoolSize)的时候,并不会创建线程,但是由于在任务数量小于coolPoolSize之前调用了addWorker并触发t.star()执行,从而调用了runWorker,通过循环不断的调用getTask()从阻塞队列中获取任务,如果getTask()返回不为null,则上锁,执行任务,任务执行完成之后解锁。如果getTask()返回null,改变completedAbrutly状态,然后调用processWorkerExit() 退出worker线程。

6. getTask代码

由第5点引出了getTask方法。

 private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out? for (;;) {
int c = ctl.get();
int rs = runStateOf(c); // Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
} int wc = workerCountOf(c); // Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
} try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}

getTask中主要看获取任务的代码如下:

  1. workQueue.poll():如果在keepAliveTime时间内,阻塞队列中没有任务,返回null;
  2. workQueue.take():如果阻塞队列为空,当前线程会被阻塞;当队列中有任务加入时,线程被唤醒,并返回任务。

6. 小结

本文只是对线程池正常的工作流程进行了分析,并没有对线程池shutdown或者stop的情况进行分析,这些部分涉及到AQS等并发技术,这部分比较复杂,感兴趣可以更加深入研究一下。

参考:

  1. https://www.cnblogs.com/trust-freedom/p/6681948.html#top
  2. https://www.jianshu.com/p/fb6e91b013cc

最新文章

  1. pipedata3d User Guide
  2. 8 HTML&amp;JS等前端知识系列之Ajax的例子
  3. win7下安装和使用Windows XP Mode
  4. Django form 中文提交 错误
  5. iOS 导入第三方文件夹时右侧出现问号
  6. codeforces 323A. Black-and-White Cube 构造
  7. 用jquery循环map
  8. java对象群体的组织:Enumeration及Iterator类
  9. 简单三步为Azure安装 Visual Studio
  10. Ansible@一个有效的配置管理工具--Ansible configure management--翻译(十二)
  11. 如何用VMware打开vmdk文件
  12. Vue项目搭建及原理二
  13. mysql查询时间段内的数据
  14. git与eclipse集成之文件回退
  15. &lt;杂记&gt;该换个背景图了
  16. Java课程寒假之开发记账本软件(网页版)之四
  17. Windows Azure Virtual Network (13) 跨数据中心之间的虚拟网络点对点连接VNet Peering
  18. 大数据学习笔记03-HDFS-HDFS组件介绍及Java访问HDFS集群
  19. Spring cloud的Maven插件(二):run目标
  20. 使用Unified Auditing Policy审计数据泵导出操作

热门文章

  1. spring SOA architecture
  2. Mac 配置多jdk 随意切换
  3. setting.xml配置文件 --转载
  4. RDD之三:RDD创建方式
  5. [转]关闭WIN7“程序兼容性助理”
  6. vSphere client 登陆ESXI主机“您无权登录次服务器”
  7. Linux-Zabbix
  8. ROS的工作模式和ESXI网卡工作模式的关系
  9. mongodb 怎样检测 安装成功 以及mongodb的一些增删改查命令
  10. 关于javascript的cookie的封装