import struct
import numpy as np
import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = np.array([[2,1,1],[3,0,1],[1,1,0]]) def convolve(dateMat,kernel):
m,n = dateMat.shape
km,kn = kernel.shape
newMat = np.ones(((m - km + 1),(n - kn + 1)))
tempMat = np.ones(((km),(kn)))
for row in range(m - km + 1):
for col in range(n - kn + 1):
for m_k in range(km):
for n_k in range(kn):
tempMat[m_k,n_k] = dateMat[(row + m_k),(col + n_k)] * kernel[m_k,n_k]
newMat[row,col] = np.sum(tempMat) return newMat newMat = convolve(dateMat,kernel)
print(newMat)

import tensorflow as tf

input1 = tf.Variable(tf.random_normal([1, 3, 3, 1]))
filter1 = tf.Variable(tf.ones([1, 1, 1, 1])) init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 1, 1, 1], padding='VALID')
print(sess.run(conv2d))

import tensorflow as tf

input1 = tf.Variable(tf.random_normal([1, 5, 5, 5]))
filter1 = tf.Variable(tf.ones([3, 3, 5, 1])) init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 1, 1, 1], padding='VALID')
print(sess.run(conv2d))

import tensorflow as tf

input1 = tf.Variable(tf.random_normal([1, 5, 5, 5]))
filter1 = tf.Variable(tf.ones([3, 3, 5, 1])) init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 1, 1, 1], padding='SAME')
print(sess.run(conv2d))

import tensorflow as tf

input1 = tf.Variable(tf.random_normal([1, 5, 5, 5]))
filter1 = tf.Variable(tf.ones([3, 3, 5, 1])) init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 2, 2, 1], padding='SAME')
print(sess.run(conv2d))

import cv2
import numpy as np
import tensorflow as tf img = cv2.imread("D:\\F\\TensorFlow_deep_learn\\data\\lena.jpg")
img = np.array(img,dtype=np.float32)
x_image=tf.reshape(img,[1,512,512,3]) filter1 = tf.Variable(tf.ones([7, 7, 3, 1])) init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
res = tf.nn.conv2d(x_image, filter1, strides=[1, 2, 2, 1], padding='SAME')
res_image = sess.run(tf.reshape(res,[256,256]))/128 + 1 cv2.imshow("lover",res_image.astype('uint8'))
cv2.waitKey()
import cv2
import numpy as np
import tensorflow as tf img = cv2.imread("D:\\F\\TensorFlow_deep_learn\\data\\lena.jpg")
img = np.array(img,dtype=np.float32)
x_image=tf.reshape(img,[1,512,512,3]) filter1 = tf.Variable(tf.ones([11, 11, 3, 1])) init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
res = tf.nn.conv2d(x_image, filter1, strides=[1, 2, 2, 1], padding='SAME')
res_image = sess.run(tf.reshape(res,[256,256]))/128 + 1 cv2.imshow("lover",res_image.astype('uint8'))
cv2.waitKey()
import tensorflow as tf

data=tf.constant([
[[3.0,2.0,3.0,4.0],
[2.0,6.0,2.0,4.0],
[1.0,2.0,1.0,5.0],
[4.0,3.0,2.0,1.0]]
])
data = tf.reshape(data,[1,4,4,1])
maxPooling=tf.nn.max_pool(data, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID') with tf.Session() as sess:
print(sess.run(maxPooling))

import cv2
import numpy as np
import tensorflow as tf img = cv2.imread("D:\\F\\TensorFlow_deep_learn\\data\\lena.jpg")
img = np.array(img,dtype=np.float32)
x_image=tf.reshape(img,[1,512,512,3]) filter1 = tf.Variable(tf.ones([7, 7, 3, 1]))
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
res = tf.nn.conv2d(x_image, filter1, strides=[1, 2, 2, 1], padding='SAME')
res = tf.nn.max_pool(res, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
res_image = sess.run(tf.reshape(res,[128,128]))/128 + 1 cv2.imshow("lover",res_image.astype('uint8'))
cv2.waitKey()
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 声明输入图片数据,类别
x = tf.placeholder('float', [None, 784])
y_ = tf.placeholder('float', [None, 10])
# 输入图片数据转化
x_image = tf.reshape(x, [-1, 28, 28, 1]) #第一层卷积层,初始化卷积核参数、偏置值,该卷积层5*5大小,一个通道,共有6个不同卷积核
filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
bias1 = tf.Variable(tf.truncated_normal([6]))
conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding='SAME')
h_conv1 = tf.nn.sigmoid(conv1 + bias1) maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))
bias2 = tf.Variable(tf.truncated_normal([16]))
conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1, 1, 1, 1], padding='SAME')
h_conv2 = tf.nn.sigmoid(conv2 + bias2) maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))
bias3 = tf.Variable(tf.truncated_normal([120]))
conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1, 1, 1, 1], padding='SAME')
h_conv3 = tf.nn.sigmoid(conv3 + bias3) # 全连接层
# 权值参数
W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 120, 80]))
# 偏置值
b_fc1 = tf.Variable(tf.truncated_normal([80]))
# 将卷积的产出展开
h_pool2_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 120])
# 神经网络计算,并添加sigmoid激活函数
h_fc1 = tf.nn.sigmoid(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # 输出层,使用softmax进行多分类
W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))
b_fc2 = tf.Variable(tf.truncated_normal([10]))
y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
# 损失函数
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
# 使用GDO优化算法来调整参数
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy) sess = tf.InteractiveSession()
# 测试正确率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # 所有变量进行初始化
sess.run(tf.initialize_all_variables()) # 获取mnist数据
mnist_data_set = input_data.read_data_sets("D:\\F\\TensorFlow_deep_learn\\MNIST\\", one_hot=True) # 进行训练
start_time = time.time()
for i in range(20000):
# 获取训练数据
batch_xs, batch_ys = mnist_data_set.train.next_batch(200) # 每迭代100个 batch,对当前训练数据进行测试,输出当前预测准确率
if i % 2 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
print("step %d, training accuracy %g" % (i, train_accuracy))
# 计算间隔时间
end_time = time.time()
print('time: ', (end_time - start_time))
start_time = end_time
# 训练数据
train_step.run(feed_dict={x: batch_xs, y_: batch_ys}) # 关闭会话
sess.close()

import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 声明输入图片数据,类别
x = tf.placeholder('float', [None, 784])
y_ = tf.placeholder('float', [None, 10])
# 输入图片数据转化
x_image = tf.reshape(x, [-1, 28, 28, 1]) #第一层卷积层,初始化卷积核参数、偏置值,该卷积层5*5大小,一个通道,共有6个不同卷积核
filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
bias1 = tf.Variable(tf.truncated_normal([6]))
conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding='SAME')
h_conv1 = tf.nn.relu(conv1 + bias1) maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))
bias2 = tf.Variable(tf.truncated_normal([16]))
conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1, 1, 1, 1], padding='SAME')
h_conv2 = tf.nn.relu(conv2 + bias2) maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))
bias3 = tf.Variable(tf.truncated_normal([120]))
conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1, 1, 1, 1], padding='SAME')
h_conv3 = tf.nn.relu(conv3 + bias3) # 全连接层
# 权值参数
W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 120, 80]))
# 偏置值
b_fc1 = tf.Variable(tf.truncated_normal([80]))
# 将卷积的产出展开
h_pool2_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 120])
# 神经网络计算,并添加relu激活函数
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # 输出层,使用softmax进行多分类
W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))
b_fc2 = tf.Variable(tf.truncated_normal([10]))
y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
# 损失函数
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
# 使用GDO优化算法来调整参数
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy) sess = tf.InteractiveSession()
# 测试正确率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # 所有变量进行初始化
sess.run(tf.initialize_all_variables()) # 获取mnist数据
mnist_data_set = input_data.read_data_sets("D:\\F\\TensorFlow_deep_learn\\MNIST\\", one_hot=True) # 进行训练
start_time = time.time()
for i in range(20000):
# 获取训练数据
batch_xs, batch_ys = mnist_data_set.train.next_batch(200) # 每迭代100个 batch,对当前训练数据进行测试,输出当前预测准确率
if i % 2 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
print("step %d, training accuracy %g" % (i, train_accuracy))
# 计算间隔时间
end_time = time.time()
print('time: ', (end_time - start_time))
start_time = end_time
# 训练数据
train_step.run(feed_dict={x: batch_xs, y_: batch_ys}) # 关闭会话
sess.close()

最新文章

  1. IO的多路复用和信号驱动
  2. Java微信公众号开发-外网映射工具配置
  3. Mybatis choose (when, otherwise)标签
  4. laravel5.2 学习之服务提供者
  5. sql总结
  6. .NET基础之集合
  7. 设计模式_Command_命令模式
  8. r个有标志的球放进n个不同的盒子里,要求无一空盒,问有多少种不同的分配方案?
  9. 用C++实现的元胞自动机
  10. 真正理解拉格朗日乘子法和 KKT 条件
  11. 让你提升命令行效率的 Bash 快捷键
  12. ZooKeeper和CAP理论及一致性原则
  13. BZOJ3159决战——树链剖分+非旋转treap(平衡树动态维护dfs序)
  14. 这些你都了解么------程序员"跳槽"法则
  15. Linux内核分析(第三周)
  16. PHP代码审计笔记--弱类型存在的安全问题
  17. Bof基础实践
  18. 杂项-TOOL:NPIO
  19. 【转】struts2.5框架使用通配符指定方法(常见错误)
  20. zoj 3370(二分+二分图染色)

热门文章

  1. js--变量对象总结
  2. 面向对象 反射 和item系列和内置函数和__getattr__和__setattr__
  3. python:递归函数(汉诺塔)
  4. 内存或磁盘空间不足 Microsoft Excel无法再次打开解决方法
  5. kafka-producer partitioner.class的使用
  6. MyTomcat(手写服务器)
  7. Tomcat性能调优后, 启动出现警告问题 [did not find a matching property.]
  8. windows下缩短time_wait的时间
  9. [转][C#]压缩解压
  10. 使用 tag 文件定义自定义标签