Deep L-layer neural network

1 - General methodology

As usual you will follow the Deep Learning methodology to build the model:

1). Initialize parameters / Define hyperparameters

2). Loop for num_iterations:

a. Forward propagation

b. Compute cost function

c. Backward propagation

d. Update parameters (using parameters, and grads from backprop)

3). Use trained parameters to predict labels

2 - Architecture of your model

You will build two different models to distinguish cat images from non-cat images.

  • A 2-layer neural network
  • An L-layer deep neural network

2.1 - 2-layer neural network

Figure 1: 2-layer neural network. 
The model can be summarized as: INPUT -> LINEAR -> RELU
-> LINEAR -> SIGMOID -> OUTPUT
.

Detailed Architecture of figure 2:

  • The input is a (64,64,3) image which is flattened to a vector of size (12288,1).
  • The corresponding vectoris then multiplied by the weight matrix of size 
  • You then add a bias term and take its relu to get the following vector: 
  • You then repeat the same process.You multiply the resulting vector by and add your intercept (bias).
  • Finally, you take the sigmoid of the result. If it is greater than 0.5, you classify it to be a cat.

2.2 - L-layer deep neural network

Figure 2: L-layer neural network. 
The model can be summarized as: [LINEAR -> RELU] × (L-1)
-> LINEAR -> SIGMOID

Detailed Architecture of figure 3:

  • The input is a (64,64,3) image which is flattened to a vector of size (12288,1).The corresponding vector is then multiplied by the weight matrixand then you add the intercept .The result is called the linear unit.
  • Next, you take the relu of the linear unit. This process could be repeated several times for each,depending on the model architecture.
  • Finally, you take the sigmoid of the final linear unit. If it is greater than 0.5, you classify it to be a cat.

3 - Two-layer neural network

Question: Use the helper functions you have implemented to build a 2-layer neural network with the following structure: LINEAR -> RELU -> LINEAR -> SIGMOID. The functions you may need and their inputs are:

def initialize_parameters(n_x, n_h, n_y):
...
return parameters
def linear_activation_forward(A_prev, W, b, activation):
...
return A, cache
def compute_cost(AL, Y):
...
return cost
def linear_activation_backward(dA, cache, activation):
...
return dA_prev, dW, db
def update_parameters(parameters, grads, learning_rate):
...
return parameters
def predict(train_x, train_y, parameters):
...
return Accuracy

3.1 - initialize_parameters(n_x, n_h, n_y)

Create and initialize the parameters of the 2-layer neural network.

Instructions:

  • The model's structure is: LINEAR -> RELU -> LINEAR -> SIGMOID.
  • Use random initialization for the weight matrices. Use np.random.randn(shape)*0.01 with the correct shape.
  • Use zero initialization for the biases. Use np.zeros(shape).
# GRADED FUNCTION: initialize_parameters

def initialize_parameters(n_x, n_h, n_y):
"""
Argument:
n_x -- size of the input layer
n_h -- size of the hidden layer
n_y -- size of the output layer Returns:
parameters -- python dictionary containing your parameters:
W1 -- weight matrix of shape (n_h, n_x)
b1 -- bias vector of shape (n_h, 1)
W2 -- weight matrix of shape (n_y, n_h)
b2 -- bias vector of shape (n_y, 1)
""" np.random.seed(1) ### START CODE HERE ### (≈ 4 lines of code)
W1 = np.random.randn(n_h, n_x)*0.01
b1 = np.zeros((n_h, 1))
W2 = np.random.randn(n_y, n_h)*0.01
b2 = np.zeros((n_y, 1))
### END CODE HERE ### assert(W1.shape == (n_h, n_x))
assert(b1.shape == (n_h, 1))
assert(W2.shape == (n_y, n_h))
assert(b2.shape == (n_y, 1)) parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2} return parameters

3.2 - linear_activation_forward(A_prev, W, b, activation)

# GRADED FUNCTION: linear_activation_forward

def linear_activation_forward(A_prev, W, b, activation):
"""
Implement the forward propagation for the LINEAR->ACTIVATION layer Arguments:
A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
b -- bias vector, numpy array of shape (size of the current layer, 1)
activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns:
A -- the output of the activation function, also called the post-activation value(后面的值)
cache -- a python dictionary containing "linear_cache" and "activation_cache";
stored for computing the backward pass efficiently
""" if activation == "sigmoid":
# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
### START CODE HERE ### (≈ 2 lines of code)
Z, linear_cache = linear_forward(A_prev, W, b) # linear_cache (A_prev,W,b)
A, activation_cache = sigmoid(Z) # activation_cache (Z)
### END CODE HERE ### elif activation == "relu":
# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
### START CODE HERE ### (≈ 2 lines of code)
Z, linear_cache =linear_forward(A_prev, W, b) # linear_cache (A_prev,W,b)
A, activation_cache = relu(Z) # activation_cache (Z)
### END CODE HERE ### assert (A.shape == (W.shape[0], A_prev.shape[1]))
cache = (linear_cache, activation_cache) # cache (A_prev,W,b,Z) return A, cache

3.3 - compute_cost(AL, Y)

Compute the cross-entropy cost  J, using the following formula:

# GRADED FUNCTION: compute_cost

def compute_cost(AL, Y):
"""
Implement the cost function defined by equation (7). Arguments:
AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples) Returns:
cost -- cross-entropy cost
""" m = Y.shape[1] # Compute loss from aL and y.
### START CODE HERE ### (≈ 1 lines of code)
cost = - (1/m)*(np.dot(Y, np.log(AL).T) + np.dot(1 - Y, np.log(1-AL).T))
### END CODE HERE ### cost = np.squeeze(cost) # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
assert(cost.shape == ()) return cost 

3.4 - linear_activation_backward(dA, cache, activation)

# GRADED FUNCTION: linear_activation_backward

def linear_activation_backward(dA, cache, activation):
"""
Implement the backward propagation for the LINEAR->ACTIVATION layer. Arguments:
dA -- post-activation gradient for current layer l
cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns:
dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
dW -- Gradient of the cost with respect to W (current layer l), same shape as W
db -- Gradient of the cost with respect to b (current layer l), same shape as b
"""
linear_cache, activation_cache = cache if activation == "relu":
### START CODE HERE ### (≈ 2 lines of code)
dZ = relu_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
### END CODE HERE ### elif activation == "sigmoid":
### START CODE HERE ### (≈ 2 lines of code)
dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
### END CODE HERE ### return dA_prev, dW, db

3.5 - update_parameters

# GRADED FUNCTION: update_parameters

def update_parameters(parameters, grads, learning_rate):
"""
Update parameters using gradient descent Arguments:
parameters -- python dictionary containing your parameters
grads -- python dictionary containing your gradients, output of L_model_backward Returns:
parameters -- python dictionary containing your updated parameters
parameters["W" + str(l)] = ...
parameters["b" + str(l)] = ...
""" L = len(parameters) // 2 # number of layers in the neural network # Update rule for each parameter. Use a for loop.
### START CODE HERE ### (≈ 3 lines of code)
for l in range(1, L+1): # l=`,2,3,...,L
parameters["W" + str(l)] = parameters["W" + str(l)] - learning_rate*grads["dW" + str(l)]
parameters["b" + str(l)] = parameters["b" + str(l)] - learning_rate*grads["db" + str(l)]
### END CODE HERE ###
return parameters

3.6 - predict(train_x, train_y, parameters)

pred_train = predict(train_x, train_y, parameters)

4 - L-layer neural network

Question: Use the helper functions you have implemented previously to build an LL-layer neural network with the following structure: [LINEAR -> RELU]×(L-1) -> LINEAR -> SIGMOID. The functions you may need and their inputs are:

def initialize_parameters_deep(layer_dims):
...
return parameters
def L_model_forward(X, parameters):
...
return AL, caches
def compute_cost(AL, Y):
...
return cost
def L_model_backward(AL, Y, caches):
...
return grads
def update_parameters(parameters, grads, learning_rate):
...
return parameters
In [14]:
def predict(train_x, train_y, parameters):
...
return Accuracy

4.1 - initialize_parameters_deep(layer_dims)

Implement initialization for an L-layer Neural Network.

Instructions:

  • The model's structure is [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID. I.e., it has L−1layers using a ReLU activation function followed by an output layer with a sigmoid activation function.
  • Use random initialization for the weight matrices. Use np.random.rand(shape) * 0.01.
  • Use zeros initialization for the biases. Use np.zeros(shape).
  • We will store , the number of units in different layers, in a variable layer_dims. For example, the layer_dims for the "Planar Data classification model" from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. Thus means W1's shape was (4,2), b1 was (4,1), W2 was (1,4) and b2 was (1,1). Now you will generalize this to LL layers!
  • Here is the implementation for L=1(one layer neural network). It should inspire you to implement the general case (L-layer neural network).
 if L == 1:
parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01
parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))
# GRADED FUNCTION: initialize_parameters_deep

def initialize_parameters_deep(layer_dims):
"""
Arguments:
layer_dims -- python array (list) containing the dimensions of each layer in our network Returns:
parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
bl -- bias vector of shape (layer_dims[l], 1)
""" np.random.seed(3)
parameters = {}
L = len(layer_dims) # number of layers in the network for l in range(1, L):
### START CODE HERE ### (≈ 2 lines of code)
parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01
parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
### END CODE HERE ### assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
assert(parameters['b' + str(l)].shape == (layer_dims[l], 1)) return parameters

4.2 - L_model_forward(X, parameters)

# GRADED FUNCTION: L_model_forward

def L_model_forward(X, parameters):
"""
Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation Arguments:
X -- data, numpy array of shape (input size, number of examples)
parameters -- output of initialize_parameters_deep() Returns:
AL -- last post-activation value
caches -- list of caches containing:
every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2)
the cache of linear_sigmoid_forward() (there is one, indexed L-1)
""" caches = []
A = X
L = len(parameters) // 2 # number of layers in the neural network # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
for l in range(1, L): #注意range是(1,L),最后的L不算进循环,l实际是从1到 L-1
A_prev = A
### START CODE HERE ### (≈ 2 lines of code)
A, cache = linear_activation_forward(A_prev, parameters['W'+str(l)], parameters['b'+str(l)], activation = "relu")
caches.append(cache)
### END CODE HERE ### # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
### START CODE HERE ### (≈ 2 lines of code)
AL, cache = linear_activation_forward(A, parameters['W'+str(L)], parameters['b'+str(L)], activation = "sigmoid")
caches.append(cache)
### END CODE HERE ### assert(AL.shape == (1,X.shape[1])) return AL, caches # caches (A_prev,W,b,Z)

4.3 - compute_cost(AL, Y)

Compute the cross-entropy cost J, using the following formula:

# GRADED FUNCTION: compute_cost

def compute_cost(AL, Y):
"""
Implement the cost function defined by equation (7). Arguments:
AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples) Returns:
cost -- cross-entropy cost
""" m = Y.shape[1] # Compute loss from aL and y.
### START CODE HERE ### (≈ 1 lines of code)
cost = - (1/m)*(np.dot(Y, np.log(AL).T) + np.dot(1 - Y, np.log(1-AL).T))
### END CODE HERE ### cost = np.squeeze(cost) # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
assert(cost.shape == ()) return cost

4.4 - L_model_backward(AL, Y, caches)

# GRADED FUNCTION: L_model_backward

def L_model_backward(AL, Y, caches):
"""
Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group Arguments:
AL -- probability vector, output of the forward propagation (L_model_forward())
Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
caches -- list of caches containing:
every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1]) Returns:
grads -- A dictionary with the gradients
grads["dA" + str(l)] = ...
grads["dW" + str(l)] = ...
grads["db" + str(l)] = ...
"""
grads = {}
L = len(caches) # the number of layers
m = AL.shape[1]
Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL # Initializing the backpropagation
### START CODE HERE ### (1 line of code)
dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cost with respect to AL
### END CODE HERE ### # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
### START CODE HERE ### (approx. 2 lines)
current_cache = caches[L-1]
grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] =linear_activation_backward(dAL, current_cache, activation = "sigmoid")
### END CODE HERE ### for l in reversed(range(L-1)): # l=L-2,L-3,...,2,1,0
# lth layer: (RELU -> LINEAR) gradients.
# Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)]
### START CODE HERE ### (approx. 5 lines)
current_cache = caches[l] # l= L-2,L-1,...,2,1,0 当l=L-2时
dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l+2)], current_cache, activation = "relu") # l+2=L
grads["dA" + str(l + 1)] = dA_prev_temp #l=L-1
grads["dW" + str(l + 1)] = dW_temp #l+1=L-1
grads["db" + str(l + 1)] = db_temp #l+1=L-1
### END CODE HERE ### return grads

4.5 - update_parameters

# GRADED FUNCTION: update_parameters

def update_parameters(parameters, grads, learning_rate):
"""
Update parameters using gradient descent Arguments:
parameters -- python dictionary containing your parameters
grads -- python dictionary containing your gradients, output of L_model_backward Returns:
parameters -- python dictionary containing your updated parameters
parameters["W" + str(l)] = ...
parameters["b" + str(l)] = ...
""" L = len(parameters) // 2 # number of layers in the neural network # Update rule for each parameter. Use a for loop.
### START CODE HERE ### (≈ 3 lines of code)
for l in range(1, L+1): # l=`,2,3,...,L
parameters["W" + str(l)] = parameters["W" + str(l)] - learning_rate*grads["dW" + str(l)]
parameters["b" + str(l)] = parameters["b" + str(l)] - learning_rate*grads["db" + str(l)]
### END CODE HERE ###
return parameters

4.6 - predict(train_x, train_y, parameters)

pred_train = predict(train_x, train_y, parameters)

pred_test = predict(test_x, test_y, parameters)

【参考】:

[1] https://hub.coursera-notebooks.org/user/rdzflaokljifhqibzgygqq/notebooks/Week%204/Deep%20Neural%20Network%20Application:%20Image%20Classification/Deep%20Neural%20Network%20-%20Application%20v3.ipynb

[2] https://hub.coursera-notebooks.org/user/rdzflaokljifhqibzgygqq/notebooks/Week%204/Building%20your%20Deep%20Neural%20Network%20-%20Step%20by%20Step/Building%20your%20Deep%20Neural%20Network%20-%20Step%20by%20Step%20v5.ipynb

【附录】:

L层神经网络的详细推导,见hezhiyao的github:   https://github.com/hezhiyao/Deep-L-layer-neural-network-Notes

最新文章

  1. DB2错误码信息
  2. Java入门第一章
  3. SPFA算法学习笔记
  4. HDU 3966(树链剖分+点修改+点查询)
  5. Presto集群安装配置
  6. java functional syntax overview
  7. android 处理图片之--bitmap处理
  8. 【UVA 1411】 Ants (KM)
  9. Delphi Keycode
  10. 加密传输SSL协议3_非对称加密
  11. 分布式基础学习(2)分布式计算系统(Map/Reduce)
  12. ios7学习之路七(隐藏虚拟键盘,解决键盘挡住UITextField问题)
  13. Unity - 通过降低精度减少动画文件的大小
  14. Java(16)接口
  15. Zabbix中获取各用户告警媒介分钟级统计
  16. Nancy in .Net Core学习笔记 - 视图引擎
  17. 【JavaFx教程】第六部分:统计图
  18. 【赛后补题】Lucky Probability(CodeForces 110D)
  19. 谈谈javascript的函数作用域
  20. jquery 获取当前时间加180天

热门文章

  1. Android 全局搜索条写成自定义控件-曹永思
  2. GetWindowRect
  3. 1.2.4注意Sysyem.out.println与i--
  4. python-Django-01基础配置
  5. 21069207《Linux内核原理与分析》第四周作业
  6. tomcat配置之后,localhost:8080访问不到猫界面解决办法
  7. 6.form表单四种提交方式
  8. 区间DP POJ1160村庄邮局问题
  9. Chubby是什么?
  10. 关于TF卡的工作原理